
行研分析师写好研究报告的几处心得
写研究报告,是分析师的本职工作,投资者与分析师接触,通常都从小小一个PDF文件开始。作为行业小兵,笔者根据自己的经验教训,梳理了写好研究报告的几处心得,与朋友们做个交流。
1. 从一个好点子开始
跟做产品类似,写报告也需要认真研究,从客户的需求特性、产业与公司特点、自身储备三个侧面精心设计,从而产生出一个点子、原型或者框架。尤其是深度报告,一定要从一个好的构思开始。什么是好的点子?可以是独占的数据,可以是从未被业内使用的框架,也可以是独特的视角或者与众不同的结论,甚至可以是批驳流行的错误观点。总之,在广泛吸收和梳理发酵的前期准备中,一个好点子能够点燃写作的激情,是动笔的原始驱动力。
2. 客观专业
对分析师来说,客观专业是最基础的要求。可惜,当前的证券界多数都不太合格。为了自己或所在机构的利益,多少卖方在上涨的时候死命鼓吹,对公司与行业的致命投资风险只字不提,最终给轻信的投资者造成巨大损失。
所谓客观,就是不要主观,要辩证、全面、理性。世界上不存在完美的公司,认识和观点会有分歧,不同时点优势也会变成劣势。比如高杠杆在周期向好的时候放大增速,而在衰退中加速下滑。制造业的垂直整合,银行的活期存款占比高,消费品类的渠道扩张导致的压货,等等。当前的竞争优势和高增长驱动力,很可能也是未来走下坡路的催化剂。针对行业特点,我们给出三个建议:
第一,逻辑论证和推演要扎实。要有可靠的数据事实支撑,要经得起证券界和实业界的推敲检验,跟公司/行业实际发展吻合,才有说服力。
第二,认真对待风险提示。对投资风险,多数分析师习惯了点到为止。实际上风险提示也是非常考究研究员功底的地方。认真细致地分析公司面临的不确定性,哪些是外部风险(建议跟踪哪些变量),哪些是商业模式内生的经营风险等等,以帮助读者建立关于风险的认知地图。分析师没有预知未来的水晶球,因此充分而可信地揭示风险既可体现专业素质,也能为将来留下辩解的余地。
第三,建立Big Picture。专业的投资经理每天要看那么多报告,他们多数对具体的行业/公司了解不是那么细致,也不需要太多细节。因此建议在报告头或尾部将大的产业环境、竞争结构、投资观点等做一鸟瞰,以帮助读者理解全局。
3. 差异化
这点卖方同行一定深有同感。差异化,就是关注那些未被满足的信息需求,关注那些同行做的不太出色而自身正好有优势的领域,关注全新的领域夺取资本市场话语权。
如果对手的行业投资逻辑做的扎实,我可以搞草根调研。
对手能搞定上市公司,细节信息丰富,那我可以聚焦产业周期。
对手国内产业分析的透彻,我可以分析国外的同类公司。
如果业界都缺乏方向感,那么斩钉截铁地指明方向就是差异化。
市场悲观时,要注意跟踪数据中的乐观迹象及时提醒;市场狂热时,不妨梳理下产业周期或对高估值、可持续性的担忧。原因有三:第一,资本市场羊群效应明显,预期一致的时候往往就是拐点。第二,只有与众不同,只有差异化,才能被人记住,才能在投资观点的红海中胜出。最后,始终对事物的对立面保持开放和谨慎,也不易犯错。
4. 形式即内容
人的认识都是先感性再理性的,感性和情绪是认识过程的背景,无法消除。这体现在研究报告上,就是必须极端重视形式,重视体验。苹果的成功就是实例,诺基亚抗摔的时代已经过去了。要站在提高客户阅读体验的高度,全方位提高形式。包括但不限于:
(1)字体、用词与色彩:字体不超过两种,除图表外基础色调也不要超过三种。用词尽量准确、简洁,可有可无的口语化衔接词一律精简,牢记少即是多。
(2)图表:用红/蓝高亮、排序或加粗来引导读者注意。
(3)逻辑结构。常用的结构范式包括:提出问题-分析问题-给出建议,树立反派-批驳-总结,伟大意义-现实需求-方案建议,历史-现状-未来,行业-公司-结论,等等,可自己总结,自由发挥。也可参考麦肯锡系列的结构化思考。
(4)投资逻辑的形象化展示。如果主逻辑中的变量过多,可尝试画图以展示相互作用。记住,一张图,胜过千言万语。
(5)尊重读者认知过程。人们对事物的认识总是由浅入深、由模糊到清晰,分析过程应尊重这一认知发展过程。包括但不限于:人们都喜新厌旧,喜欢被认同,喜欢秩序而非混乱,喜欢态度明确,喜欢简洁清晰有力的结论而非拖沓软弱和模棱两可,等等。
(6)制造阅读情绪的波动。好莱坞大片成功的原因之一是能够以光怪陆离的视声学效果、巧妙的情节设计和剪辑,引导甚至掌控观众的情绪波动,从而实现预期效果。优秀的研究报告应该像电影、演讲那样给读者带来愉快的情绪体验。报告中不时地制造矛盾、偶尔的诘问、反派观点的对比和批判,富有洞察力的个人创见的集中展示等,制造丰富的情绪体验包括疑惑解惑好奇惊喜等,从而给读者留下印象。
形式上的技巧有很多,关键的一条是,要像大导演炮制商业大片一样关注体验,关注视觉和心理效果。将分析中的亮点、卖点和心理冲击点设计为报告的高潮,并在之前逐步铺垫和引导。具体的,可以看看版式设计、色彩心理学、设计原理和iPhone设计规范等,一定会有很多启发。
5. 超预期
如同股票的上涨需要超预期的基本面做催化剂一样,一份报告要想获得读者的芳心,也必须超出预期。超预期的第一步是调查当前业界同行的研究水平。客户对该股与该行业的认识和观点,有无重大偏见,相关持仓,当前的心理状态,有无潜在的研究需求和可能的认知盲点,等等。对客户和同行了解越全面深刻,就越知道怎么写。第二,不要略超预期,要远超预期。如果你只比客户水平高一点点,客户也不会有多深印象。因为他会想:我稍作努力也能达到这个水准。但如果你超越客户2-3步,认识水平高出市场平均2个层次,客户就会感受到认知差距和冲击力,敬佩之情铁定油然而生。这才是真正的超预期。如同上市公司,业绩增速预期是20%,25%只是略超预期,而30%甚至35%就是远超预期。
6. 激情
证券研究是个极其苦逼的职业,工作量无穷大,被众多的上市公司忽悠,被股价涨跌折腾,被每日层出不穷的各种新闻公告折腾,频繁的出差,加上工作中痛苦的信息收集和发酵过程,痛苦的不断蜕变过程,被自己内心的各种魔鬼折腾。活着不容易,能发出点有价值的声音更不容易。没有人喜欢僵化死板的八股文。我们需要追求卓越的强烈激情,来激发那灵光一现的洞察力。读者都希望被有价值的观点和强大的投资逻辑所征服,被作者的激情、热爱所感染。时光流逝行业变迁,所有的逻辑和观点终将湮灭,但当初那个充满激情的分析师形象,一定还会留在读者的心中。研究需要激情,研究需要玩命。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14