
互联网与大数据将成为智能制造的基石
“这是最好的时代,也是最坏的时代”,机遇总是留给有准备的人。当前,中国制造业正遭遇转型期的阵痛,汽车产业作为制造业中技术含量、智能化程度较高,产业集中度较高的代表,体现着一个国家综合工业实力水平,将成为制造业产业升级的先导阵地。此外,汽车行业又不仅仅是汽车一个单一的产品,它还将会带动电子、玻璃、橡胶、化工、钢铁等很多行业,是一个庞大的产业链布局,因而汽车产业的转型升级显得最为迫切和重要。接下来,我就有关汽车产业智能制造方面谈一下自己的感想,稍后也欢迎大家一起讨论交流。
第一,汽车智能制造的首要任务是创新。因为创新是引领发展的第一动力,汽车智能制造的成功需要激发创新活力。特别是随着信息技术、新能源、新材料等重要领域融合与创新的加深,正引发新一轮汽车产业变革。为此,我们将在车型开发、流程标准、制造模式、生产组织方式等多方面进行创新变革。未来,汽车产品也将朝着个性化定制、服务型制造的方向转变,这就需要我们的工厂在生产工艺、生产流程等方面进行更多的创新,实现转型升级。
在这一转型升级过程中,智能工厂将在其中起着至关重要的作用,它将利用物联网、设备监控等技术,减少生产线上的人工干预,构建一个高效节能、绿色环保的人性化工厂,最终实现多品种小批量生产,过去单一的大批量生产时代将被淘汰。近期,我们与IBM、华为、清华等世界领先的信息科技公司展开合作,合力打造一汽-大众“智慧工厂”,在技术创新和业务数字化走出了重要一步,未来将会持续加速创新与数字化战略布局。
第二,我要和大家分享的就是,汽车智能制造的未来将是绿色发展。在《中国制造2025》中明确提出,新能源汽车将是国家发展汽车产业的方向,纯电动和插电式混合动力汽车、燃料电池汽车、节能汽车、智能互联汽车都将是国内未来发展重点。
但是,需要特别注意的是,当前新能源技术成熟尚需要时间,中国汽车产业实现纯电动化不会一蹴而就。所谓欲速则不达,因而传统汽车、混合动力汽车与纯电动汽车仍将在未来一段时间内共存发展,这是新能源汽车发展的现状和规律。实际上,现在中国的环境压力非常严峻,对汽车环保也提出了一些硬性的要求,除了汽车本身的技术要创新,要减少排量、排放,提升排放的水平外,我想更多的应该是要大家一起带动全产业链协同绿色发展,以“绿色实效”引领“绿色未来”,不断推进人、车、社会的可持续发展。
比如近期我们发布了针对中国市场研发的奥迪A6Le-tron插电式混合动力汽车,百公里综合油耗仅为2.3L,这也是一汽-大众当前倡导“绿色实效”的发展理念的最新成果,从绿色工厂到绿色生产,再到绿色伙伴,我们致力于带动全产业链的绿色协同发展,以“绿色实效”引领“绿色未来”。
除了创新和绿色发展这两个关键点之外,综合目前汽车制造业现状以及未来科技发展趋势,互联与大数据也将是汽车智能制造不得不面对的两大课题。对于汽车制造而言,互联就是要把设备、生产线和员工通过网络紧密地联络在一起,所有信息都是实时共享,这样就组成一个制造能力无所不在的智能制造系统,比如把工厂的机器以及人连接到网络中去,机器与机器之间、人与机器之间实现对话,越来越多的关键工序将由机器人来完成,大幅提升汽车制造的生产效率。
而关于大数据的应用,未来更将会渗透到企业运营、价值链乃至产品的整个生命周期。但是,如果只是将数据收集好而不做任何时分析,那也会变得毫无意义。只有对工业大数据进行精准分析,比如根据统计出来的用户喜爱偏好数据,来给用户定制进行个性化的配置,让人们拥有更多自主权来选择一辆符合自己个性化的汽车,不仅会为汽车智能制造带来更加精准、高效、科学的管理,而且也会带来更高的研发生产效率,更低的运营成本。
女士们,先生们,媒体朋友们!工业4.0不是一场突然而至的革命,也不是可以一蹴而就的革新,而是一个循序渐进的升级进程。在这一具有重大历史意义的进程中,对于中国制造业,尤其是汽车制造业而言,既是极为严峻的挑战,更是一个技术上赶超发展、结构上加快升级的重大机遇。
当然,关于汽车智能制造,还有很多需要探讨的话题,刚才我主要结合一汽-大众,以及我对行业的理解,谈了一些自己的思考,算是抛砖引玉。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02