
互联网与大数据将成为智能制造的基石
“这是最好的时代,也是最坏的时代”,机遇总是留给有准备的人。当前,中国制造业正遭遇转型期的阵痛,汽车产业作为制造业中技术含量、智能化程度较高,产业集中度较高的代表,体现着一个国家综合工业实力水平,将成为制造业产业升级的先导阵地。此外,汽车行业又不仅仅是汽车一个单一的产品,它还将会带动电子、玻璃、橡胶、化工、钢铁等很多行业,是一个庞大的产业链布局,因而汽车产业的转型升级显得最为迫切和重要。接下来,我就有关汽车产业智能制造方面谈一下自己的感想,稍后也欢迎大家一起讨论交流。
第一,汽车智能制造的首要任务是创新。因为创新是引领发展的第一动力,汽车智能制造的成功需要激发创新活力。特别是随着信息技术、新能源、新材料等重要领域融合与创新的加深,正引发新一轮汽车产业变革。为此,我们将在车型开发、流程标准、制造模式、生产组织方式等多方面进行创新变革。未来,汽车产品也将朝着个性化定制、服务型制造的方向转变,这就需要我们的工厂在生产工艺、生产流程等方面进行更多的创新,实现转型升级。
在这一转型升级过程中,智能工厂将在其中起着至关重要的作用,它将利用物联网、设备监控等技术,减少生产线上的人工干预,构建一个高效节能、绿色环保的人性化工厂,最终实现多品种小批量生产,过去单一的大批量生产时代将被淘汰。近期,我们与IBM、华为、清华等世界领先的信息科技公司展开合作,合力打造一汽-大众“智慧工厂”,在技术创新和业务数字化走出了重要一步,未来将会持续加速创新与数字化战略布局。
第二,我要和大家分享的就是,汽车智能制造的未来将是绿色发展。在《中国制造2025》中明确提出,新能源汽车将是国家发展汽车产业的方向,纯电动和插电式混合动力汽车、燃料电池汽车、节能汽车、智能互联汽车都将是国内未来发展重点。
但是,需要特别注意的是,当前新能源技术成熟尚需要时间,中国汽车产业实现纯电动化不会一蹴而就。所谓欲速则不达,因而传统汽车、混合动力汽车与纯电动汽车仍将在未来一段时间内共存发展,这是新能源汽车发展的现状和规律。实际上,现在中国的环境压力非常严峻,对汽车环保也提出了一些硬性的要求,除了汽车本身的技术要创新,要减少排量、排放,提升排放的水平外,我想更多的应该是要大家一起带动全产业链协同绿色发展,以“绿色实效”引领“绿色未来”,不断推进人、车、社会的可持续发展。
比如近期我们发布了针对中国市场研发的奥迪A6Le-tron插电式混合动力汽车,百公里综合油耗仅为2.3L,这也是一汽-大众当前倡导“绿色实效”的发展理念的最新成果,从绿色工厂到绿色生产,再到绿色伙伴,我们致力于带动全产业链的绿色协同发展,以“绿色实效”引领“绿色未来”。
除了创新和绿色发展这两个关键点之外,综合目前汽车制造业现状以及未来科技发展趋势,互联与大数据也将是汽车智能制造不得不面对的两大课题。对于汽车制造而言,互联就是要把设备、生产线和员工通过网络紧密地联络在一起,所有信息都是实时共享,这样就组成一个制造能力无所不在的智能制造系统,比如把工厂的机器以及人连接到网络中去,机器与机器之间、人与机器之间实现对话,越来越多的关键工序将由机器人来完成,大幅提升汽车制造的生产效率。
而关于大数据的应用,未来更将会渗透到企业运营、价值链乃至产品的整个生命周期。但是,如果只是将数据收集好而不做任何时分析,那也会变得毫无意义。只有对工业大数据进行精准分析,比如根据统计出来的用户喜爱偏好数据,来给用户定制进行个性化的配置,让人们拥有更多自主权来选择一辆符合自己个性化的汽车,不仅会为汽车智能制造带来更加精准、高效、科学的管理,而且也会带来更高的研发生产效率,更低的运营成本。
女士们,先生们,媒体朋友们!工业4.0不是一场突然而至的革命,也不是可以一蹴而就的革新,而是一个循序渐进的升级进程。在这一具有重大历史意义的进程中,对于中国制造业,尤其是汽车制造业而言,既是极为严峻的挑战,更是一个技术上赶超发展、结构上加快升级的重大机遇。
当然,关于汽车智能制造,还有很多需要探讨的话题,刚才我主要结合一汽-大众,以及我对行业的理解,谈了一些自己的思考,算是抛砖引玉。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14