
大数据成为证据的新标准
大数据并非严格意义上的证据,因为被万维网络记录下来的大数据是杂乱的,分散的,尚不具备作为证明案件事实的证据资格,只有在将相关数据进行客观完整采集的基础上,运用科学的数据处理技术进行连接、运算和分析,它们才能为证明案件事实提供有价值的分析结论,成为证据。大数据成为证据除了要求具有传统的证据三性之外,还要具备新的标准。笔者以2012年—2014年奇虎诉腾讯滥用市场支配地位案(以下简称奇虎诉腾讯案)为例,对大数据成为证据所应具备的新标准进行阐释。
一、数据内容的完整性
大数据转变为证据要求所依赖和利用的数据必须具有完整性,即应采集获取与所证明事项或目标相关的完整数据,唯有如此,所作出的分析结果才具有充分的证明力。在奇虎诉腾讯案中,奇虎证明相关商品市场范围时所提供的艾瑞咨询《中国即时通信年度检测报告》(2010-2011年),其所依据的数据就缺乏完整性,艾瑞咨询监测了个人电脑端即时通信软件的数据,但未监测统计手机和平板电脑等移动端即时通信软件的数据,也未将即时通信产品作为核心产品一部分的微博和SNS社交网站产品纳入到相关市场商品集合中进行数据监测统计,因此不能用来有效地划定本案相关市场的范围。
二、数据来源的复合性
大数据不是从单一来源中形成证据的,大数据到证据的转变需要针对具体事项和目标的需要,通过对多个不同来源的数据库或信息相互关联,从中多维分析挖掘才能够实现,这是一个复杂的分析挖掘复合形成的过程。奇虎诉腾讯一案中法院多次使用了CNNIC第24次《中国互联网络发展状况统计报告》和艾瑞咨询《中国即时通信年度检测报告》(2010-2011年),其中CNNIC拥有高效、安全、稳定的互联网基础资源服务平台,从1997年成立至今已发布了38次《中国互联网络发展状况统计报告》,其统计报告的调查数据和分析结论就具有典型的复合性。艾瑞咨询是拥有国内数据累积时间最长、规模最大、最为稳定的各类数据库,并通过多种指标研究帮助行业建立评估和衡量的标准,至今发布了大量互联网行业的数据统计分析报告,同样具有典型的复合性。在奇虎诉腾讯案中,法院就是根据这两个机构提供的统计数据对既使用移动端即时通信服务又使用个人电脑端即时通信服务的网民数量进行推算,结果是1.7亿人,约占个人电脑端即时通信服务用户总数的48.6%;而且法院根据艾瑞咨询报告的预测,作出合理预见:用户用移动端即时通信服务替代个人电脑端即时通信服务的可能性和比例将进一步增大,这对个人电脑端即时通信服务的经营者形成了有效的竞争约束。据此法院将移动端即时通信服务纳入了本案相关商品市场范围。
三、数据处理技术的科学性
大数据是海量的,分散的、无形的,必须借助科学有效的大数据处理技术才能从中获取有价值的大数据证据。所谓数据处理技术的科学性是指必须采用相关技术领域普遍认同的技术方法,或者可以进行相应验证的技术方法。唯有采用科学的数据处理方法,才能保证通过该方法形成的数据处理结论具有可靠性、具有证明力。在奇虎诉腾讯一案中,法院在认定腾讯是否可以控制商品价格时,使用了CNNIC《中国即时通信用户调研报告》(2009年度)、艾瑞咨询《中国即时通信用户行为研究报告》(2010-2011年) 和eNet的调查结果。其中CNNIC《中国即时通信用户调研报告》(2009年度)指出,不愿意为使用即时通信服务付费的用户高达60.6%。艾瑞咨询《中国即时通信用户行为研究报告》(2010-2011年)则表明, 2010年51.2%的中国即时通信用户从未支付任何费用。eNet调查结果也显示,如果腾讯QQ即时通信服务收费,只有6.69%的用户表示将付费并继续使用,81.71%的用户将转而使用其他即时通信软件。上述报告或结果很明显使用的是数据处理技术中的统计与分析技术,其主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行常规的分析和分类汇总等,其方法已得到业界的普遍认同,具有科学性。据此法院认为,在免费的互联网基础即时通信服务已经长期存在并成为通行商业模式的情况下,用户对即时通信服务价格的改变会有极高的敏感度,如果从免费模式改为收费模式,哪怕是收费较低都会产生客户大量流失的风险,故法院认定腾讯控制商品价格的能力较弱。
2015年8月国务院印发的《促进大数据发展行动纲要》明确指出大数据是以容量大、类型多、存取速度快、应用价值高为主要特征的数据集合,正快速发展为对数量巨大、来源分散、格式多样的数据进行采集、存储和关联分析,从中发现新知识、创造新价值、提升新能力的新一代信息技术和服务业态。为此,我们应将大数据的思维和方法运用到我国司法领域,将完整的数据作为证据基础,复合的数据库作为证据来源,科学的数据处理技术作为证明方法,从中发现和获取新的知识、创造新的价值,通过大数据分析结果为认定疑难事实提供可靠有效的依据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01