
大数据成为证据的新标准
大数据并非严格意义上的证据,因为被万维网络记录下来的大数据是杂乱的,分散的,尚不具备作为证明案件事实的证据资格,只有在将相关数据进行客观完整采集的基础上,运用科学的数据处理技术进行连接、运算和分析,它们才能为证明案件事实提供有价值的分析结论,成为证据。大数据成为证据除了要求具有传统的证据三性之外,还要具备新的标准。笔者以2012年—2014年奇虎诉腾讯滥用市场支配地位案(以下简称奇虎诉腾讯案)为例,对大数据成为证据所应具备的新标准进行阐释。
一、数据内容的完整性
大数据转变为证据要求所依赖和利用的数据必须具有完整性,即应采集获取与所证明事项或目标相关的完整数据,唯有如此,所作出的分析结果才具有充分的证明力。在奇虎诉腾讯案中,奇虎证明相关商品市场范围时所提供的艾瑞咨询《中国即时通信年度检测报告》(2010-2011年),其所依据的数据就缺乏完整性,艾瑞咨询监测了个人电脑端即时通信软件的数据,但未监测统计手机和平板电脑等移动端即时通信软件的数据,也未将即时通信产品作为核心产品一部分的微博和SNS社交网站产品纳入到相关市场商品集合中进行数据监测统计,因此不能用来有效地划定本案相关市场的范围。
二、数据来源的复合性
大数据不是从单一来源中形成证据的,大数据到证据的转变需要针对具体事项和目标的需要,通过对多个不同来源的数据库或信息相互关联,从中多维分析挖掘才能够实现,这是一个复杂的分析挖掘复合形成的过程。奇虎诉腾讯一案中法院多次使用了CNNIC第24次《中国互联网络发展状况统计报告》和艾瑞咨询《中国即时通信年度检测报告》(2010-2011年),其中CNNIC拥有高效、安全、稳定的互联网基础资源服务平台,从1997年成立至今已发布了38次《中国互联网络发展状况统计报告》,其统计报告的调查数据和分析结论就具有典型的复合性。艾瑞咨询是拥有国内数据累积时间最长、规模最大、最为稳定的各类数据库,并通过多种指标研究帮助行业建立评估和衡量的标准,至今发布了大量互联网行业的数据统计分析报告,同样具有典型的复合性。在奇虎诉腾讯案中,法院就是根据这两个机构提供的统计数据对既使用移动端即时通信服务又使用个人电脑端即时通信服务的网民数量进行推算,结果是1.7亿人,约占个人电脑端即时通信服务用户总数的48.6%;而且法院根据艾瑞咨询报告的预测,作出合理预见:用户用移动端即时通信服务替代个人电脑端即时通信服务的可能性和比例将进一步增大,这对个人电脑端即时通信服务的经营者形成了有效的竞争约束。据此法院将移动端即时通信服务纳入了本案相关商品市场范围。
三、数据处理技术的科学性
大数据是海量的,分散的、无形的,必须借助科学有效的大数据处理技术才能从中获取有价值的大数据证据。所谓数据处理技术的科学性是指必须采用相关技术领域普遍认同的技术方法,或者可以进行相应验证的技术方法。唯有采用科学的数据处理方法,才能保证通过该方法形成的数据处理结论具有可靠性、具有证明力。在奇虎诉腾讯一案中,法院在认定腾讯是否可以控制商品价格时,使用了CNNIC《中国即时通信用户调研报告》(2009年度)、艾瑞咨询《中国即时通信用户行为研究报告》(2010-2011年) 和eNet的调查结果。其中CNNIC《中国即时通信用户调研报告》(2009年度)指出,不愿意为使用即时通信服务付费的用户高达60.6%。艾瑞咨询《中国即时通信用户行为研究报告》(2010-2011年)则表明, 2010年51.2%的中国即时通信用户从未支付任何费用。eNet调查结果也显示,如果腾讯QQ即时通信服务收费,只有6.69%的用户表示将付费并继续使用,81.71%的用户将转而使用其他即时通信软件。上述报告或结果很明显使用的是数据处理技术中的统计与分析技术,其主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行常规的分析和分类汇总等,其方法已得到业界的普遍认同,具有科学性。据此法院认为,在免费的互联网基础即时通信服务已经长期存在并成为通行商业模式的情况下,用户对即时通信服务价格的改变会有极高的敏感度,如果从免费模式改为收费模式,哪怕是收费较低都会产生客户大量流失的风险,故法院认定腾讯控制商品价格的能力较弱。
2015年8月国务院印发的《促进大数据发展行动纲要》明确指出大数据是以容量大、类型多、存取速度快、应用价值高为主要特征的数据集合,正快速发展为对数量巨大、来源分散、格式多样的数据进行采集、存储和关联分析,从中发现新知识、创造新价值、提升新能力的新一代信息技术和服务业态。为此,我们应将大数据的思维和方法运用到我国司法领域,将完整的数据作为证据基础,复合的数据库作为证据来源,科学的数据处理技术作为证明方法,从中发现和获取新的知识、创造新的价值,通过大数据分析结果为认定疑难事实提供可靠有效的依据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18