京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS中介效应分析
社会心理学研究中经常遇到分析待研究的自变量与因变量之外的第三者变量在其中所扮演的角色和意义。如果第三者变量是协变量,我们可以通过协变量的方差分析或回归分析加以控制;如果第三者经过排查不是协变量,可能是因果之间的间接变量和(或)调节变量,对这类的问题的研究,中介效应与调节效应分析时可行的解决之道。
一、中介效应的概述
中介效应是指变量间的影响关系(X-Y)不是直接的因果链关系,而是通过一个或一个以上的变量(M)的间接影响产生的,因此我们称M为中介变量,而X通过M对Y产生的间接影响称为中介效应。中介效应是间接效应的一种,模型中在只有一个中介变量的情况下,中介效应等于间接效应;当中介变量不止一个的情况下,中介效应不等于简介效应,此时间接效应可能是部分中介效应和所有中介效应的总和。在社会心理学研究当中,变量间的关系很少是直接的,更常见的是间接关系。
自变量X对因变量Y的影响,如果X变量通过影响M变量来影响Y变量,则M为中介变量。通常将变量经过中心化转化后,得方程1:Y=cX+e1;方程2:M=aX+e2;方程3:Y=c’X+b M +e3。其中,c是X对Y的总效应,ab是经过中介变量M的中介效应,c'是直接效应。当只有一个中介变量时,效应之间有c=c'+ab,中介效应的大小用c-c'=ab来衡量。
二、中介效应检验过程
中介效应是简介效应,无论变量是否涉及潜变量,都可以用结构方程模型分析中介效应。步骤为:第一步检验c,如果c不显著,Y与X相关不显著,停止中介效应分析,如果显著进行第二步;第二步依次检验a、b,如果都显著,那么检验c',c'显著,为部分中介效应模型,c'不显著,则为完全中介效应模型;如果a、b至少有一个不显著,则做sobel检验,检验的统计量是Z=^a^b/Sab,显著则中介效应显著,不显著则中介效应不显著。Sobel检验免费的在线计算器网址为http://www.danielsoper.com/statcalc/calc31.aspx,只要把这a、b、SEa、SEb四个数输入,就可以直接得到Z值及其单侧与双侧概率。
三、实例详解
研究工作认同感与工作绩效之间心理因素(焦虑)的意义。原始数据包括:领导不认同、同事不认同、客户不认同、心跳、紧张、坐立不安、效率低和效率下降8个变量,如图3-1所示。
图30-1 中间效应分析例题数据库
操作步骤:
(1)根据分析目的,合并原始变量产生3个新变量“工作不被认同”、“焦虑”和“工作绩效”,如图30-2所示,各个新变量值等于原始变量的均值。
图3-2 产生3个新变量
自变量(X)为“工作不被认同”包含3个观测指标:领导不认同、同事不认可、客户不认可;中介变量(M)“焦虑”包含3个指标:心跳、紧张、坐立不安;因变量(Y)“工作绩效”包含两个观测指标:效率低和效率下降。
新变量的均值如图3-3所示。
描述统计量
图30-3 新变量的均值
(2)将新变量X、M、Y中心化,即个体值与其均数之差处理,得到中心化后的新变量:X“不被认同(中心化)”、M“焦虑(中心化)”、Y“工作绩效(中心化)”,如图3-4所示。

图3-4 中心化后的新变量
(3)中介效应分析第一步检验,即检验方程Y=cX+e1中的c是否显著。
SPSS实现过程如下:
1)单击“分析”|“回归”|“线性”命令,弹出图3-5所示的“线性回归”对话框。
2)将变量“工作绩效(中性化)”放入“因变量”框,将变量“不被认同(中性化)”放入“自变量”框。方法选择“进入”。
图3-5 “线性回归”对话框
3)单击“统计量”按钮,弹出3-6所示的“线性回归:统计量”对话框,选择左侧的“估计(E)”复选框,选择右侧“模型拟合度(M)”和“R方变化(S)”复选框。其他采用系统默认,单击“继续”按钮返回主对话框。
图3-6 “线性回归:统计量”分析对话框
4)单击“确定”按钮,输出结果。

图3-7 回归分析检验方差中c的显著性结果1
检验结果如图3-7和图3-8所示。可知,方程Y=cX+e1的回归效应显著,c值等于0.678,P=0.000,可以进行方程M=aX+e2和Y=c'X+bM+e3的显著性检验。
图3-8 回归分析检验方差中c的显著性结果2
(4)中介效应分析第二步检验,即检验方程M=aX+e2中的a是否显著。
SPSS实现过程如下:
1)单击“分析”|“回归”|“线性”命令,弹出图3-5所示的“线性回归”对话框。
2)将变量“焦虑(中性化)”放入“因变量”框,将变量“不被认同'(中性化)”放入“自变量”框。方法选择“进入”。
图3-9 回归分析检验方差中a的显著性结果1
3)其他选择不变,单击“确定”按钮,输出结果,如图3-9、3-10所示。
图3-10 回归分析检验方差中a的显著性结果2
由图3-9、图3-10所示结果分析可知,方程M=aX+e2中,a值等于0.533,显著性P=0.000,继续进行方程Y=c'X+bM+e3的显著性检验。
(5)中介效应分析第三步检验,即检验方程Y=c'X+bM+e3中的b是否显著。
SPSS实现过程如下:
1)单击“分析”|“回归”|“线性”命令,弹出3-5所示的“线性回归”对话框。
2)将变量“工作绩效(中性化)”放入“因变量”框,将变量“不被认同(中性化)”和“焦虑(中性化)”同时放入“自变量”框。方法选择“进入”。
3)其他选项不变,单击“确定”按钮,输出结果,如图3-11、3-12所示。
图3-12 回归分析检测方差中b的显著性结果2
如图3-11、图3-12所示的结果分析可知,方程Y=c'X+bM+e3中,b值为0.213.显著性为p=0.000,因此a和b都是有显著性的,接下来检验中介效应到底是部分中介效应还是完全中介效应。
(6)判断完全中介效应还是部分中介效应,即c'的显著性。
由图30-7所示的结果可知c'等于0.574,显著性为P=0.000,因此是部分中介效应。自变量“工作不被认同”对因变量“工作绩效”的中介效应不完全通过中介变量“焦虑”的中介来达到其影响,“工作不被认同”对“工作绩效”有部分直接效应,中介效应对总效应的频率为:Effect M=ab/c=0.533x0.213/0.678(16.7%),中介效应解释了因变量的方差变异为sqrt(0.490-0.459)=0.176(17.6%)。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22