
SPSS缺失值得分析处理
在资料收集的过程中,由于各种原因可能导致数据收集不全,就会产生缺失值,且这种情况往往无法避免。如果缺失值处理不当,就会导致分析结果精度降低,出现偏倚甚至是错误的理论,因此缺失值的分析显得尤为重要。数据的缺失经常会存在着一定的规律,为了认识和研究缺失数据,按照数据缺失形式,我们常将其分为单元缺失与项目缺失两种。
(1)单元缺失:只针对需调查的个案进行调查而没有得到个案信息。如对整个班级进行调查,发放60分调查表,部分调查对象未交回调查表导致的资料缺失。这种缺失在数据分析阶段常常无能为力。
(2)项目缺失:指在调查内容中某些变量的观测结果有缺失。如对整个班级进行调查后,收回的调查表中,部分女生因为“保密”而未填写体重一项,造成资料缺失。
无论缺失数据的形式是单元缺失还是项目缺失,从缺失机制与方式上又可将其分为完全随机缺失、随机缺失与非随机缺失。
(1)完全随机缺失(Missing Completely at Random,MCAR)指已评价的结果或即将要进行的评价结果中,研究对象的缺失率是独立的。即缺失现象完全随机发生,与自身或其他变量取值无关。如调查进行中,因被调查对象接到电话,或紧急事件马上离开,调查无完成导致缺失。
(2)随机缺失(Missing at Random,MAR)指缺失数据的发生与数据库中其他无缺失变量的取值有关。某一观察值缺失的概率仅依赖已有的观察结果。比如,研究某新药对高血压患者的疗效,但一些血压过高的患者,根据纳入标准予以排除。MAR是最常见的缺失机制。
(3)非随机缺失(MIssing Not at Random,MNAR)指数据的缺失不仅与其他变量的取值有关,缺失率与缺失数据有关,也和自身有关。这种缺失大都不是偶然因素所造成的,常常是不可忽略的,比如在调查收入时,收入高的人出于各种原因不愿意提供家庭年收入值。对于MNAR此种缺失机制,目前尚无特别有效的方法能进行处理。
识别缺失数据的产生机制是极其重要的,首先这涉及到代表性问题,从统计上说,非随机缺失的数据会产生偏估计,因此不能很好地代表总体。其次,它决定数据插补方法的选择。随机缺失数据处理相对比较简单,但非随机缺失数据处理比较困难,原因在于偏差的程度难以把握。
面对不同的数据缺失情况,那我们该如何处理呢?大致上我们把处理方法归为以下几类。
1、删除缺失值
最常见、最简单的处理缺失数据的方法,使用这种方法时,如果任何个案在某一变量含有缺失数据的话,就把相对应的个案从分析中剔除。如果缺失值所占比例较小 的话,这一方法十分有效。然而,这种方法却有很大的局限性,它是以减少样本量来换取信息的完备,会造成资源的大量浪费,丢弃了大量隐藏在这些对象中的信息。
2、缺失值代替
即“转换”选项卡中“替换缺失值”菜单过程。此过程将所有的记录看成一个序列,然后采用某种指标对缺失值进行填充,它实际上专门用于解决时间序列模型中的缺失值问题。虽然其中的一些填充方法也可以用于普通数据,但相比之下,如果在序列数据中使用该过程可能得不偿失,应当谨慎使用。常用的填充方式由算术均数、缺失值邻近点的算术均数、中位数以及线性插入等。
3、缺失值分析
此过程是SPSS专门针对缺失值分析而提供的模块,他提供了对缺失值问题全面而强大的分析能力,主要功能有以下3种:
(1)缺失值的描述和快速诊断:用灵活的诊断报告来评估缺失值问题的严重性,用户可以观察到它们在哪些变量中出现,比例为多少,是否与其他变量取值有关,从而得知这些缺失值出现是否会影响分析结论。
(2)得到更精确的统计量:提供了多种方法用于估计含缺失值数据的均值、相关矩阵或协方差矩阵,通过这些方法计算出的统计量将更加可靠。
(3)用估计值替换缺失值:使用EM或回归法,用户可以从未缺失数据的分布情况中推算出缺失数据的估计值,从而能有效地使用所有数据进行分析,来提高统计结果的可信度。
在前述的3种缺失机制中,非随机缺失很难得到有效的统计学处理,SPSS的缺失值分析模块主要是对MCAR和MAR的情形进行分析,尤其是后者。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01