京公网安备 11010802034615号
经营许可证编号:京B2-20210330
不止于大而在于“准” 大数据告别“数据洪流”
随着大数据概念深入人心,越来越多的企业开始认可数据存在价值。挖掘自身数据价值、获取外部数据是企业两大需求。企业通过社会、天气、政府数据来预测供应链中断。大量的用户数据被各个网站收集利用,一些公司甚至开始利用大量的文本交流数据建立算法,从而与客户进行对话。
但现实的情况是,我们对大数据重要性的痴迷,往往会产生误导。是的,在一些情况下,从数据中能获取有价值的东西,但对于创新者来说,数据量和规模不是关键的因素,找到正确的数据才是关键。
有时候正确的数据规模也很大,也有的时候正确的数据规模很小。对于创新者,关键在于哪些关键的数据对企业最有帮助,要找到正确的数据,那么,如何才能实现这一目标呢?
一是寻找浪费源。“哪里有浪费,哪里就有机会”。无论你是工业生产、零售还是法务调查公司,搞清楚哪些因素会浪费你的资源,都能够帮你找到正确的数据。
二是如何减少浪费。在确定哪些因素会造成资源浪费之后,下一步就是要减少浪费。人类擅长于做某些类型的决定,比如在品牌营销方面,这部分应该交给人类解决。
事实上,只要理解了传统系统当中的浪费,并且知道了浪费造成的后果,最后一步就是去问一个简单的问题。如果你可以有任何数据来帮助你做出完美的决定,它会是什么?
目前数据在各行业的应用还处于探索阶段,随着行业发展,数据在各行业应用成熟,数据能带来多大价值会逐渐达成共识,数据将逐渐成为标准化商品,交易过程中的信息不对称将大大降低。
传统企业的数据应用程度与该行业的信息化程度有关,像金融、电信等行业信息化程度较高,其数据源价值很大。像医疗、制造业等行业的企业内部数据库尚未实现互联,大数据尚处于起步阶段。这点可以从大数据公司重点涉足的行业看出,多数大数据公司选择将银行、运营商作为切入点,医疗、工业大数据公司相对较少,而且体量较小。
互联网数据乍一看是开放程度最高,应用范围最广的数据源,但实际上互联网数据中最具价值的部分都被BAT等互联网巨头所拥有,目前几乎不对外开放。通过爬虫等方式获取的数据价值非常有限。不过随着移动互联网兴起,移动设备承载的用户行为数据价值被挖掘出来。
大部分公司花了太多的时间提倡大数据,但是却几乎没有花时间去想清楚哪些数据才是正确的有价值的数据。目前来看,最有价值的数据源是政府、运营商和BAT,BAT的数据完全不开放,政府的数据同样开放程度有限,而运营商的数据开放程度最高,有十几家大数据公司与运营商合作,可以接触到运营商的数据。
随着技术发展,数据加工会更趋于标准化加工流程,同业比拼的不仅仅是技术实力,对接的数据源数目和质量更为重要。目前这一领域还属于早期圈地阶段,很多行业的数据还未被有效存储、采集,未来随着各行业信息化成熟,高质量数据源是最核心竞争力。这个领域会逐步淘汰小公司,最终剩下几个大公司,新公司进入门槛越来越高
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27