
SPSS分析技术:非线性回归;科学种田!肥料应该用多少合适
非线性回归
非线性关系可以分为本质是线性关系的非线性关系和完全非线性关系,有点拗口。在曲线回归总已经介绍,可以通过变量装换,转化为线性关系,并进行线性回归分析的就是本质是线性关系的非线性关系。如果无法通过变量装换,转化为线性关系,无法进行线性回归分析的叫完全非线性关系。今天我们介绍的非线性关系就是完全非线性关系的回归分析。
非线性回归的优势
曲线估计只能用于一个自变量和因变量相关关系的模型的分析,而非线性回归分析可以用来探讨因变量和一组自变量之间的非线性相关模型。非线性回归可以估计因变量和自变量之间任意关系的模型,可以根据自身需要随意设定估计方程的具体形式。因此,非线性回归在实际应用中价值更大,应用范围更广。
非线性回归模型
范例分析
某省农科院新培育了一种高产量农作物,并在海南的试验田中进行实验种植,现有试验田施肥量及其对应的农作物产量数据,根据该数据文件推定施肥量与产量之间的关系。
分析步骤
1、做散点图,观察施肥量与农作物产量的关系;选择菜单【图形】-【旧对话框】-【散点/点状】,将施肥量选为自变量,产量选为因变量。
2、 估计初始值;根据上图,施肥量和产量之间似乎存在线性关系。但是根据实际经验可知,这种推断不正确。因为作物产量不可能随着施肥量的增加而一直增加下去,当产量达到一定水平时,施肥量的增加不会带来产量的进一步提高,二者的关系可以用渐进回归模型:
要确定回归方程,首要估算出参数b1、b2、b3的初始值。由散点图看出,产量最大值接近13,不妨设b1=13;x=0时,y=6,故b2=6-13=-7;b3为散点图中两个分隔较宽的点之间的连线的斜率的倒数,在此取b3=-1.5。
3、参数设置;选择【分析】-【回归】-【非线性】菜单,打开非线性回归对话框。按照下图输入数据。
4、损失函数设置;单击“损失”,设置损失函数。所谓损失函数是指一个包括当前工作文件中的变量以及所设定的参数并通过计算法使之最小化的函数。系统默认状态下,非线性回归过程根据算法将残差平方和最小化为损失函数。如果选择“用户定义的损失函数”,可以再“用户定义的损失函数”列表框中键入或者粘贴一个表达式。字符串常数必须包含在引号或撇号中,数字常数必须按以美式格式键入,并用句点作为小数分隔符。本案例选择系统默认设置。单击“继续”。
5、 参数约束设置;单击“约束,定义参数约束。“约束”是在对解的迭代搜索过程中对参数所允许值的限制。该对话框有两个设置选项:“未约束”和“定义参数约束”。
6、 保存设置;单击“保存”,该对话框提供4种用于保存的数据类型,允许作为新变量的观测值保存于当前文件中。
7、算法选项设置;单击“选项”,该对话框用于设置参数估计的算法和算法的迭代次数、迭代步长和收敛条件等。
结果解释
1、 如上图所示,该案例经过多大20步的迭代估计之后,找到模型的最优解,即 b1、b2、b3的参数估计值13.348、-10.783和-0.418,此外还得到了三个参数值的标准误差和95%置信区间,以及三个参数估计值的相关系数,可以看出各个参数值之间的相关性很高,尤其是b1和b3的相关系数达到0.968,属非常显著的相关关系。
2、 根据上表回归模型的方差分析结果,表中回归行的平方和代表该回归模型所能解释的模型的方差变化,而残差行的平方和代表该非线性回归模型所不能解释的方差变化。二者的和即为未修正的总计,它是总的残差平方和,而R2=1-(残差平方和)/(已更正的平方和)=0.907,说明该模型能解释因变量90.7%的变异量,即该非线性模型的拟合优度很高。根据以上分析可以确定,该分析所获得的回归模型显著。
根据线性回归模型:
可得回归方程:
从散点图可以知道,目前采集到的数据还不足够,因为图中没有出现明显的平缓趋势。为了找到最合适的施肥量,可以通过得到的回归方程,做出自变量(施肥量)范围更广的曲线,找出曲线的平缓位置,这个位置对应的横轴值就是合理的施肥量。数据分析培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29