
SPSS分析技术:非线性回归;科学种田!肥料应该用多少合适
非线性回归
非线性关系可以分为本质是线性关系的非线性关系和完全非线性关系,有点拗口。在曲线回归总已经介绍,可以通过变量装换,转化为线性关系,并进行线性回归分析的就是本质是线性关系的非线性关系。如果无法通过变量装换,转化为线性关系,无法进行线性回归分析的叫完全非线性关系。今天我们介绍的非线性关系就是完全非线性关系的回归分析。
非线性回归的优势
曲线估计只能用于一个自变量和因变量相关关系的模型的分析,而非线性回归分析可以用来探讨因变量和一组自变量之间的非线性相关模型。非线性回归可以估计因变量和自变量之间任意关系的模型,可以根据自身需要随意设定估计方程的具体形式。因此,非线性回归在实际应用中价值更大,应用范围更广。
非线性回归模型
范例分析
某省农科院新培育了一种高产量农作物,并在海南的试验田中进行实验种植,现有试验田施肥量及其对应的农作物产量数据,根据该数据文件推定施肥量与产量之间的关系。
分析步骤
1、做散点图,观察施肥量与农作物产量的关系;选择菜单【图形】-【旧对话框】-【散点/点状】,将施肥量选为自变量,产量选为因变量。
2、 估计初始值;根据上图,施肥量和产量之间似乎存在线性关系。但是根据实际经验可知,这种推断不正确。因为作物产量不可能随着施肥量的增加而一直增加下去,当产量达到一定水平时,施肥量的增加不会带来产量的进一步提高,二者的关系可以用渐进回归模型:
要确定回归方程,首要估算出参数b1、b2、b3的初始值。由散点图看出,产量最大值接近13,不妨设b1=13;x=0时,y=6,故b2=6-13=-7;b3为散点图中两个分隔较宽的点之间的连线的斜率的倒数,在此取b3=-1.5。
3、参数设置;选择【分析】-【回归】-【非线性】菜单,打开非线性回归对话框。按照下图输入数据。
4、损失函数设置;单击“损失”,设置损失函数。所谓损失函数是指一个包括当前工作文件中的变量以及所设定的参数并通过计算法使之最小化的函数。系统默认状态下,非线性回归过程根据算法将残差平方和最小化为损失函数。如果选择“用户定义的损失函数”,可以再“用户定义的损失函数”列表框中键入或者粘贴一个表达式。字符串常数必须包含在引号或撇号中,数字常数必须按以美式格式键入,并用句点作为小数分隔符。本案例选择系统默认设置。单击“继续”。
5、 参数约束设置;单击“约束,定义参数约束。“约束”是在对解的迭代搜索过程中对参数所允许值的限制。该对话框有两个设置选项:“未约束”和“定义参数约束”。
6、 保存设置;单击“保存”,该对话框提供4种用于保存的数据类型,允许作为新变量的观测值保存于当前文件中。
7、算法选项设置;单击“选项”,该对话框用于设置参数估计的算法和算法的迭代次数、迭代步长和收敛条件等。
结果解释
1、 如上图所示,该案例经过多大20步的迭代估计之后,找到模型的最优解,即 b1、b2、b3的参数估计值13.348、-10.783和-0.418,此外还得到了三个参数值的标准误差和95%置信区间,以及三个参数估计值的相关系数,可以看出各个参数值之间的相关性很高,尤其是b1和b3的相关系数达到0.968,属非常显著的相关关系。
2、 根据上表回归模型的方差分析结果,表中回归行的平方和代表该回归模型所能解释的模型的方差变化,而残差行的平方和代表该非线性回归模型所不能解释的方差变化。二者的和即为未修正的总计,它是总的残差平方和,而R2=1-(残差平方和)/(已更正的平方和)=0.907,说明该模型能解释因变量90.7%的变异量,即该非线性模型的拟合优度很高。根据以上分析可以确定,该分析所获得的回归模型显著。
根据线性回归模型:
可得回归方程:
从散点图可以知道,目前采集到的数据还不足够,因为图中没有出现明显的平缓趋势。为了找到最合适的施肥量,可以通过得到的回归方程,做出自变量(施肥量)范围更广的曲线,找出曲线的平缓位置,这个位置对应的横轴值就是合理的施肥量。数据分析培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15