京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析的好习惯
良好的数据习惯,助力数据分析,也让我们养成一个系统的数据分析思维。文章按数据分析的步骤进行讲解数据分析需要养成的良好习惯。文章第一点告诉我们,数据拿到手不忙着直接分析,先对数据的基本特征,以及数据分布有一定了解,后期的建模才有的放矢;文章第二点指出,没有经过验证的数据分析不是完整的分析,模型验证也是分析的一大步骤;文章最后指出,学会讲解你数据分析的结果,不然做得再好,难以被人知晓。详情,请大家自行阅读咯。
1. 分析数据前,一定要尽可能多的进行数据可视化!可视化!可视化!做exploratory data analysis
我上过的几乎所有的应用性的统计课程上的老师都会强调这一点。这个习惯对于数据科学家、统计学家来说估计是最最实用的。
在实际的数据分析过程中,数据可视化可以揭示很多insights:从选择什么样的模型,选择哪些feature建模,到如何分析结果,解释结果等等。
给一个很著名的例子, Anscombe's quartet (安斯库姆四重奏):这个例子包含四组数据。每组数据有11个(x, y)数据样本点。
四组数据样本里x的均值方差全相等,y的均值方差基本相等,x与y的相关系数也很接近。
导致的结果是,四组数据线性回归的结果基本一样。但是,这四组数据本身差别很大。如下图。
如果不做可视化,简单跑一个线性回归,我们只能得到同样的回归线。
数据可视化后,很直观的,左上图是传统的线性回归;右上图需要high-order nonlinear term;左下图x和y是线性关系,但是有outlier;右下图x和y没有线性关系,也有outlier, etc.
每一个数据科学家都应该熟悉各种图的画法,更重要的是,不同的图如何反映不同的信息以及面对不同的数据类型时,应该选择哪种图才能最好的揭示数据里蕴含的信息。
为此,强烈推荐关于R里ggplot包的教程:ggplot2 - Elegant Graphics for Data Analysis
当然另一方面,如果数据量太大维度太高,数据可视化做起来就比较困难。这时候就需要一些经验技巧了。
2. 跑完程序得到模型结果时,一定提醒自己:任务只完成50%,分析,验证,解释结果才是根本
很多时候,我们以为写完code跑完程序就完事了。能做到这一步只能算是一个合格的data analyst。这离数据科学家,统计学家还差远了。
分析,验证,解释结果才是根本! 这个过程更需要data sense, domain knowledge, and statistical expertise.
在拿到结果的时候,一定要多问自己为什么。
模型assumptions是否满足?结果是否make sense?能否解答research question?
特别当结果不符合expectation时,要么有新发现,要么有错误!如果有错,错在哪里?
如果模型假设不成立,如何修正?是否有outliers,如何处理?
或有missing values,missing的机制是啥样的(missing at random, completely at random, or NOT at random)?
是否有multicollinearity?
数据收集是否有bias (如selection bias)?
建模是否忽略了confounding factors (Simpson's paradox)?
3. 养成story-telling的习惯
把分析结果跟你的boss或者collaborator讲!务必让他们明白!这个太需要技巧了, 特别是当你的collaborator是layperson的时候。
不会说只能等着被虐,哪怕analysis做的再好!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04