
建模那点事儿—实战篇
有过建模经验的人自然懂,没有经验的各位也不要着急,这次我以一个真实模型为例,给大家详细讲述建模的各个步骤。
照例,先上流程图:
大家可以看到,这个图是由我之前文章中的两张图拼合而来,而我今天讲的这个真实模型,将把图中所有的流程都走一遍,保证一个步骤都不漏。
话说这个项目跟我加入百度有直接关系……
2013年的最后一天,我结束了在三亚的假期,准备坐飞机回家,这时候接到一个知乎私信,问我对百度的一个数据科学家(其实就是数据分析师啦)职位是否感兴趣,我立刻回信,定了元旦假期以后去面试。两轮面试过后,面试官——也是我加入百度后的直属Leader——打电话给我,说他们对我的经历很满意,但是需要我给他们一份能体现建模能力的报告。
按说这也不是一件难事,但我翻了翻电脑后发现一个问题:我从上家公司离职时,为了装13,一份跟建模相关的报告文件都没带……最后双方商定,我有一个星期时间来做一份报告,这份报告决定了我是否能加入百度。
那么,是时候展示我的技术了!我的回合,抽卡!
看看报告的要求:
数据最好是通过抓取得来,需要用到至少一种(除描述统计以外)的建模技术,最好有数据可视化的展示
看来是道开放题,那么自然要选择一个我比较熟悉的领域,因此我选择了……《二手主机游戏交易论坛用户行为分析》
为啥选这个呢?你们看了我那么多的Mario图,自然知道我会选主机游戏领域,但为什么是二手?这要说到我待在国企的最后半年,那时候我一个月忙三天,剩下基本没事干,因此泡在论坛上倒卖了一段时间的二手游戏……
咳咳……总之,目标就确定了:分析某二手主机游戏交易论坛上的帖子,从中得出其用户行为的描述,为用户进行分类,输出洞察报告。
简单来说,就是用python写了个定向爬虫,抓了某个著名游戏论坛的二手区所有的发帖信息,包括帖子内容、发帖人信息等,基本上就是长这个样子:
(打码方式比较简单粗暴,请凑合看吧……)
这个模型中的数据清洗,主要是洗掉帖子中的无效信息,包括以下两类:
1、论坛由于其特殊性,很多人成交后会把帖子改成《已出》等标题,这一类数据需要删除:
2、有一部分人用直接贴图的方式放求购信息,这部分体现为只抓到图片链接,需要删除。
数据清洗结束了么?其实并没有,后边会再进行一轮清洗……不过到时再说。
用上面的那些帖子数据其实是跑不出啥结果的,我们需要把数据整理成可以进一步分析的格式。
首先,我们给每条帖子打标签,标签分为三类:行为类型(买 OR 卖 OR 换),目标厂商(微软 OR 索尼 OR 任天堂),目标对象(主机 OR 游戏软件)。打标签模式是”符合关键词—打相应标签“的方法,关键词表样例如下:
(主机掌机那个标签后来我在实际操作时没有使用)
打完标签之后,会发现有很多帖子没有打上标签,原因有两种:一是关键词没有涵盖所有的产品表述(比如三公主这种昵称),二是有一部分人发的帖子跟买卖游戏无关……
这让人怎么玩……第二次数据清洗开始,把这部分帖子也洗掉吧。
其次,我们用发帖用户作为视角,输出一份用户的统计表格,里边包含每个用户的发帖数、求购次数、出售次数、交换次数、每一类主机/游戏的行为次数等等,作为后续搭建用户分析模型之用。表格大概长这个样子:
之后这个表的列数会越来越多,因为数据重构的工作都在此表中进行。
整理之后,我们准备进行描述统计。
描述统计在这个项目中的意义在于,描述这一社区的二手游戏及主机市场的基本情况,为后续用户模型的建立提供基础信息。
具体如何进行统计就不说了,直接放成品图,分别是从各主机市场份额、用户相互转化情况、地域分布情况进行的洞察。
因为我要研究的是这些用户与二手交易相关的行为,因此初步选择变量为发帖数量、微软主机拥有台数、索尼主机拥有台数、任天堂主机拥有台数。
算法上面,我们的目标是将用户分群,因此选择聚类,方法选择最简单的K-means算法。
K-means算法除了输入变量以外,还需要设定聚类数,我们先拍脑袋聚个五类吧!
(别笑,实际操作中很多初始参数都是靠拍脑袋得来的,要通过结果来逐步优化)
看看结果:
第一类别的用户数跟总体已经很接近了,完全没有区分度啊!
这一节你看标题都这么长……
既然我们用原始值来聚类的结果不太好,那么我把原始值重构成若干档次,比如发帖1-10的转换为1,10-50的转换为2,依次类推,再聚一次看看结果。
哦哦!看上去有那么点意思了!不过有一类的数量还是有一点少,我们聚成四类试试:
哦哦,完美! 我们运气不错,一次变量重构就输出了一个看上去还可以的模型结果,接下来去测试一下吧。
测试过程中,很重要的一步是要看模型的可解释性,如果可解释性较差,那么打回重做……
接下来,我们看看每一类的统计数据:
这个表出来以后,基本上可以对我们聚类结果中的每一类人群进行解读了。结果测试通过!
这个模型不用回朔到系统中,因为仅仅是一个我们用来研究的模型而已。因此,输出规则和模型加载两步可以跳过,直接进入报告撰写。
聚类模型的结果可归结为下图:
眼熟不?在我的第二篇专栏文章第一份数据报告的诞生 – 一个数据分析师的自我修养 – 知乎专栏 中,我用这张图来说明了洞察结论的重要性,现在你们应该知道这张图是如何得来的了。
撰写报告的另外一部分,在描述统计-洞察结论的过程中已经提到了,把两部分放在一次,加上背景、研究方法等内容,就是完整的报告啦!
最后附送几张各类用户发帖内容中的关键词词云图:
那么,这篇文章就到此结束了,最后的最后,公布一下我做这份报告用到的工具:
大家可以看到,要当一个数据分析师,要用到很多类别的工具,多学一点总是没有坏处的,在此与大家共勉。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01