
成为一位卓越数据科学家必须要具备四大特征
对于那些希望在大数据时代掘金的公司来说,成功的关键是找到数据科学家, 并围绕数据科学家搭建团队。如今优秀的数据科学家一将难求, 而卓越的数据科学家更是灿若晨星。 如何才能发现真正改变企业乃至行业未来的伟大的数据科学家呢?
Thomas Redman在哈佛商业评论博客中发表了一篇关于区分好的数据科学家和伟大的数据科学家的文章。
好的数据科学家能够帮助你从浩如烟海的数据中发现你无法发现的规律, 而伟大的数据科学家可以发现一个更大的世界, 他们采用数据, 但不完全依赖于数据。
在过去的几年里, 我有幸能够和上百个好的统计学家, 分析师和数据科学家合作。 其中有一些可以称之为“伟大”。 我发现, 这些伟大的数据科学家们都具备四大特征, 是那些好数据科学家所不具备的。
好奇心
最近有很多人都在提到好奇心是数据科学家的必要素质。 这没错, 和任何领域的科学家一样, 数据科学家也需要具备基本的好奇心。
而伟大的数据科学家将好奇心发展到极致。 他们热衷于研究这个世界, 他们会为了发现事物的规律和原因而兴奋不已。他们从数据中去发现事物的规律和原因。 面对数据 他们会从数据的不同角度来进行研究, 进而去发现别人所看不到的规律。
一定的数学水平
伟大的数据科学家能够发现别人看不到的东西。 举个例子来说, 我以前在一个投行碰到过一个实习生。 他现在已经是一个大的媒体集团的首席数据科学家。 在他第二天上班的时候, 老板给了他一叠报告。 他简单扫了一眼报告, 发现了一个关于回报率的计算错误。 他有花了一个小时验证了这个错误并算出正确答案。
重要的是, 几百人都看过这份报告, 而这是一个顶级的投资银行, 肯定有一些相当好的分析师也看过这个报告, 而只有他看出了这个错误。
在描述现实世界的时候, 数学是一种非常有效的语言(爱因斯坦说是“难以置信的有效)。 伟大的数据科学家对这种语言具备一种天生的感觉, 这些甚至是一些好的数据科学家所做不到的。
坚持
伟大的数据科学家在很多方面都能表现出坚持的特点。 前面说的实习生, 看了一眼发现了错误, 花了一个钟头就验证出来了。 实际上数据分析很少能这么快。 就像BT的CIO Jeff Hooper在贝尔实验室时有句名言:“数据不会轻易地把秘密告诉你, 你需要把秘密从中榨出来。”
这说的一点没错。 即便在最好的情况下, 数据也常常是不完整甚至存在错误的。 而大部分数据最后都和你要解决的问题无关。 盯着这些“噪音”数据工作是一项单调无趣的工作。 好的数据科学家可能会转而研究别的问题, 而伟大的数据科学家会坚持继续研究。
数据科学家的另外一个坚持就是他们会坚持表述自己的发现。 这一点, 在大的企业中, 甚至可能比“噪音”数据更加会令人沮丧。 还是拿前面那个实习生的例子。 他工作第二天就发现了这个错误, 而他需要整个实习期都要来“捍卫”他这个发现。 出了错误的部门肯定会死不承认, 而别的部门就想看笑话。 数据科学家夹在其中, 需要足够的坚持才能把正确的观点传达出来。
技术能力
掌握最新的数据分析方法很重要, 更重要的是, 要有具备对统计学的知识和热情。 简单的说, 数据分析包括两类:描述型分析和预测型分析。 描述性分析已经很难了。 而预测型分析则更加棘手, 它充满了不确定性。
伟大的数据科学家能够驾驭不确定性。 他们知道预测的哪些部分是基于真实的观察, 哪些因素是基于假设的。 他们知道要使预测有效, 哪些条件必须满足。 哪些因素会导致预测失效, 哪些未知因素可能会导致预测错误等等。 他们会量化风险。 他们会设计一些小型实验来验证或者推翻某些假设。
总之, 这不是一种“数学技能”, 而是长期在复杂的工作中,经过了无数成功和失败后培养出来的一种能力。
伟大的数据科学家非常稀少, 他们就是数据科学界的迈克尔-乔丹, 朱莉娅-罗伯茨, 或者帕瓦罗蒂。 如果企业需要认真地把宝压在从大数据和数据分析上, 那么你需要找到一个到两个这样的人, 给他们配备团队, 营造好的环境, 让他们按照自己的方式去工作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07