
数据分析模块建立五步走
必须采取有效的项目管理流程,以创造一个成功的大数据分析程序是十分重要的,也不能过分的夸大。以下的五点建议,可供企业参考借鉴,以帮助企业确保顺利实现部署:
首先,决定要收集哪些数据。
就其本质而言,大数据分析项目涉及大型数据集。但是,这并不意味着要所有的企业数据源,或是相应的数据源的信息都需要进行分析。企业需要确定那些是对于企业来说有分析价值的战略性数据。例如,什么样的组合信息可以帮助确定关键客户?或者需要什么样的数据帮助发现隐藏在股市中的交易模式?在规划阶段专注于一个项目的业务目标,可以帮助企业进行精确分析,以满足这些业务目标。在某些情况下,这确实意味着一切数据信息。但是,在其他情况下,它意味着只使用大数据的一个子集。
第二,建立有效的业务规则,然后通过他们创建的复杂工作。
应对复杂性是大多数大数据分析计划的关键环节。为了得到正确的分析结果,在这个过程中包括以业务为中心的数据拥有者是必不可少的,以确保所有必要的业务规则是事先确定的。一旦规则被记录在案,技术工作人员可以评估他们创造的工作的复杂性,需要把数据输入到相关的领域进行有价值的发现。这导致进入下一个阶段的实施情况,讨论如下。
第三,以合作方式将业务规则转化为相关分析。
业务规则只是制定有效的大数据分析应用的第一步。下一步,IT或分析专业人士需要创建解析查询和需要产生所需输出的算法。但这不应该在真空中进行。更好和更准确的查询都放在首位,重建是必须的。许多项目需要不断的重复,因为项目团队和业务部门之间缺乏沟通。持续的沟通和合作,会到来更流畅的分析开发过程。
第四,有一套维护计划。
除了最初的开发工作,一个成功的大数据分析倡议需要持续关注维护和更新。定期查询维护和保持高层对业务变化需求是重要的,但他们仅代表管理一个分析程序的一个方面。随着数据量的不断增加,企业越来越熟悉分析过程中,他们想解决的更多的问题将不可避免地出现。分析团队必须能够及时跟上,解决这些新增的问题。此外,评估大数据分析硬件和软件的选项的要求之一是评估其支持迭代开发过程中的动态业务环境的能力。一套分析系统如果能适应需求的变化,将随着时间的推移,保持其价值。
第五,时刻牢记用户的需求。
随着人们越来越感兴趣采用自助服务的商务智能(BI) 功能,您不应该对关注最终用户的大数据分析计划是一个关键因素感到震惊。当然,有一个强大的IT基础架构,可以处理大型数据集和结构化和非结构化信息是非常重要的。不过,开发一套可用的,易于交互的系统也是十分必要的,这样做意味着要考虑不同用户的需求。不同类型的人-从高级管理人员到操作工人、从业务分析师和统计人员将采用这种或那种方式访问大数据分析应用程序,他们所采用的工具将有助于确保整个项目的成功。这需要不同程度的交互功能,满足用户的期望。他们有大量的分析工具使用经验。例如,目前的仪表盘和数据可视化,对于企业管理人员和工人来说易于理解,使得他们不再倾向于运行自己的大数据分析查询。
没有一种方法可以确保大数据分析的成功。但是,遵循一系列的框架和最佳实践方案,包括上面提到的要诀,可以帮助企业正确行走在他们的大数据计划轨道上。大数据安装的技术细节是相当密集的,需要研究和深入地考虑。无论是技术方面和商业因素方面都需要考虑,以确保企业从他们的大数据分析的投资中获得期望的结果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01