
数据科学有助于数据挖掘,数据分析
“数据科学家”这一术语尚未失去吸引力,据Metamarkets公司的共同创始人及首席技术官Michael Driscoll说。Metamarkets是一家为数字、社交和移动媒体公司提供预测分析的创业公司。
当Driscoll 用这个术语描述在分析和商业智能领域出新出现的一种角色时,其他人并不打算这样做,并且这个头衔倍受争议。
Driscoll把数据科学家们形容成土木工程师。
“土木工程师一部分是物理学家,一部分是建筑工人,”他说。同时,数据科学家必须能够在数据领域里找到理论和实践之间的平衡。
最近业务调查分析公司与Driscoll一起谈论了数据科学家以及他们如何利用预测分析阐明未来。
什么是数据科学?
Michael Driscoll:数据科学是一种新词语,因此像所有的新词一样,它是一个进化的术语和标题。实际上,数据科学家是那些将数学家和统计学家的理论专业知识和注重实践的软件开发人员的工程操作相结合的人。在过去的十年里,处于统计分析、应用数学和计算机科学交叉领域的机器学习正在复兴。但要让所有这些理论被利用,最后还需要进行编码。所以数据科学家能将这些理论和实际相结合的人。
当你谈论数据科学的实践这一块时,你指的是什么?
Driscoll:我一般以三种技能来描述数据科学,首先,“数据转型”,它包括切片和切块的能力,转换,提取和以一种轻便、流动的方式处理数据。第二个技能是数据建模,它主要是得到一组数据并能够在数据中开发一种模式的假设,再利用统计工具对这一假设进行测试。第三个技能是数据可视化。一旦你将数据转换成可利用的形式 ( 第一个技能), 你就已经开发出一种关于一些数据特征的模型可能涉及到一系列观察,一些数据的结果 ( 第个二技能)。然后你需要以一种决策制定者能了解的方式传达这样的洞察力。这需要能够讲一个故事或建立一种视觉叙事的能力,而这正是数据可视化要解决的问题。
为什么是建立一种叙述是如此的重要?
Driscoll:如果一位数据科学家正致力于这个海量信息及大量信息输出的时代,我们需要一种以同等高效率来消费这些信息的方法。数据可视化是其中的方式之一。事实上,它可能是我们可以一种非常高的效率来消费信息的最重要的方式。
预测分析如何与数据科学组合在一起?
Driscoll:数据做数据的事情。所有这些数据科学的目标最终是预测系统和消费者的行为。实际上,仅拥有数据表面的洞察力是不够的。你希望能够对下一步会发生什么进行预测。据Karl Popper说,科学的整体目标是做出可以否定的预测。而做出预测真的是数据科学家所有工作的最终目标。它是前瞻,而不是后顾。有人或许会说,商业智能和这种报表的领域都是关于过去的;预测分析是关于未来的。
然而,一些人说预测分析需要回顾才能预测未来。
Driscoll:绝对的。数据挖掘,预测分析的目标是研究过去,但最终能生成对未来的预测。我举个例子。Facebook尝试去了解在Facebook 系统上什么类型的用户行为会导致更高的参与平台,才可能会在注册后三个月保持活跃。所以他们查看了所有用户的过去。他们查看用户的性别,有多少朋友,他们都在什么样的学校。他们查看所有的这些不同用户特征的观察,然后,三个月之后,他们研究了这些被观察到的特征中有哪些最有可能会响应不久后的高层次的活动。他们发现导致三个月后更活跃地使用Facebook的最高相关特征是你拥有的朋友数量。这就是一种预测力解析的洞察力。结果,一旦人们在Facebook上注册,他们就努力建议尽可能多的人加入你的网络。预测分析本质上是将观察的事件和结果之间建立联系;这可能是最简单的解决方式。有很多方法来切分它,但最终,你是在建立一个系统的数学模型。为了测试数学模型是否是正确的,你做出预测,然后观察未来事件是否能证实或反驳你对系统做出的假设。
但是,你真的需要一个数据科学家来建立你的模型吗?
Driscoll:这里有一个预测模型的例子:你想看看用信用卡购物的行为特征以及是否它是欺骗性的采购。让我们假设你的两个特征是一天之中的时间和采购所处的国家。在某些情况下,通过国家进行的信用卡欺诈行为的简单可视化数据会跳到你面前。任何在爱沙尼亚发生的采购,如果信用卡持有人在美国,就会是欺诈购买。你不需要一个统计模型告诉你这一切。它只是对数据的测绘。事实是当差异变小了,那么你需要依靠统计来告诉你是否观察到的趋势是有意义的。显而易见的事情是容易的。归结为更加细致入微的区别时,需要统计区分出噪音和信号之间的区别。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29