京公网安备 11010802034615号
经营许可证编号:京B2-20210330
浅议工业大数据分析的方法论
人们常说,工业大数据是用来挖掘价值的。但更关键的是:价值应如何被挖掘?
我曾经在多个场合申明:“大数据用到工业,特点是对可靠性要求高,而取得可靠性的难度大。” 这个矛盾是个拦路虎,一定要解决才行。为了解决这个矛盾,我再次提出:“知识首先存在于人的脑子当中,需要用数据去雕琢、证伪、修正——而不是强调从数据里面发现新知识 ”——这与商务大数据是不同的。

我的这个观点有个潜台词:人脑中的知识是模糊甚至是错误的,这才需要去雕琢和证伪。其实,人脑中的多数认识是正确的;但可以挖掘价值的地方,却往往是模糊的、甚至是错误的。事实上,大数据创造的价值是通过修正人的认识中的不足和偏差来实现的。
人脑中的这些模糊认识,发生在什么情况下呢?
一种情况是受部门利益或流程标准的限制。我们知道,组织大到一定程度,就要划分成若干部门;机制复杂到一定程度,就要流程化、标准化。这些都是促进生产力发展的。但是,这些事情又会制约信息的流动和科学决策,从而容易形成与组织利益不一致的个人和部门利益。同时,“标准”和流程的缺陷与不足,让一些价值损失“合法化”,难以从组织整体的高度优化决策。认清事实,就便于我们创造系统的价值。
经验主义、教条主义、官僚主义与唯命是从,也容易让人形成模糊甚至是错误的认识。早在10多年前,我就意识到: 在创新过程中,需要强调价值创造。强调价值创造的原因,是为了避免误入歧途——离开具体的背景,片面追求好的指标。但最近却越来越感到:这个口号正在误导一些企业。在这个口号的引导下,间接创造价值、系统创造价值都被压制了;与风险同在的价值被压制了;算不清楚收益的工作被压制了;长远的价值被压制了。其实,错的不是口号,而是简单地理解这些口号。语言的表现力是有限的;再明确的语言,到了蠢材那里都会被误解。而唯命是从、经验主义、教条主义、官僚主义,就会让人变蠢。有个段子形象地表达了这种现象。市领导到公园考察:“那些多些绿化那就更好了”于是,园长让人运来了一顿盐(把‘绿化那’听成‘氯化钠’)堆在公园里。这个段子看似好笑,在很多地方其实非常接近现实。
还有人认为:系统的价值损失不大,就不重视这些问题。我却觉得,系统价值其实很大,但主要是被掩盖掉了。另外,考虑到很多制造企业的利润率也只有1%~2%,能把小的方面优化起来,利益也是客观的。其实,把局部优化都做好了,整个企业就可能发生质变——这就好比把坑坑洼洼的道路修成了高速公路,司机就可以放心开高速了。否则,你会花费太多的成本来预防“异常”。
数据如何才能起到上述作用?
老大说过一句话:打铁还需自身硬。本人也有个对应的观点:数据的力量来自于真实和科学。这句话的含义是:人们在推进数字化的时候,常常被认识水平和局部利益所绑架、被政绩观绑架,使得数据不具备科学性和真实性。数据不科学,怎么可能用来修正人的错误认识呢?试想,如果真的是“经济增长就靠统计局了”,国家还能搞好吗?英国有位前首相说:“世界上有三类谎言:谎言,弥天大谎和统计数据。”。 搞数据的人,一定要知道:数据是会骗人的。学会不被数据所骗,是数据分析的基本功。
让数据代表科学和真实,其实并不容易。不仅要看到文化和制度的原因,也有技术和认识方面的原因。这里,就需要有方法论的支持。举个例子,希望引发大家的思考:
1、从A地到B地,平均2小时。其实,从A地到B地有两条路,一条平均半小时,一条平均10小时,只是很少有人走10小时的那条路。那么,如果你不知有两条路,仅知道“从A地到B地,平均2小时。”,真的能代表科学与事实吗?
2、喜欢打牌的人,50%是骗子。我们知道:一般来说,这句话是错的。但是,如果统计的对象是一群罪犯呢?结果还是有可能的。
这两个例子用来供大家思考,并没有什么答案。爱其实,很早之前,人们就提出“数据质量”的概念。数据质量,不仅是精度问题,更是“适用性”问题——适用的结果,才是真实的结果。在笔者看来,在大数据时代,让我们有更好的条件通过各种对比,判断一个结论的“适用性”:因为可以找到一大堆的案例进行对比——语文老师从小就告诉我们:有对比才会有说明。
但是,对比说明就那么容易吗?当然也不容易,需要找到一种与业务知识相关的知识和逻辑,才能便于对比说明。否则,整出一个“关公战秦琼”也难说。有了业务知识,就能避免这些笑话。如果缺少业务知识,就很难判断一个分析结果是假象还是众所周知的无聊论断——如前所述,在工业过程中,系统复杂性很容易导致“发现”大量的假象和无聊的结果。如果没有起码的业务知识,时间就会都浪费在无聊的“发现”上。
现在回到开头:工业大数据分析的最终目的是挖掘价值。但现实中直接的作用在于展示现实——展示那些头脑中被假象和错误观念蒙蔽的现实。在被蒙蔽的现实中,隐含着改进的空间——这就是金子所在的地方。当然,看到价值并不等于能够解决问题——这些问题很可能需要用智能制造的办法来解决。所以,我设想:工业大数据或许可以作为智能制造的先导。智能制造的第一要义是“信息感知”:用大数据感知真实的现实,岂不正是智能制造的先导吗?孙子说“知己知彼百战不殆”,不也是要先做到“信息感知”吗?克服官僚主义,不要也要靠“信息感知”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01