京公网安备 11010802034615号
经营许可证编号:京B2-20210330
浅议工业大数据分析的方法论
人们常说,工业大数据是用来挖掘价值的。但更关键的是:价值应如何被挖掘?
我曾经在多个场合申明:“大数据用到工业,特点是对可靠性要求高,而取得可靠性的难度大。” 这个矛盾是个拦路虎,一定要解决才行。为了解决这个矛盾,我再次提出:“知识首先存在于人的脑子当中,需要用数据去雕琢、证伪、修正——而不是强调从数据里面发现新知识 ”——这与商务大数据是不同的。

我的这个观点有个潜台词:人脑中的知识是模糊甚至是错误的,这才需要去雕琢和证伪。其实,人脑中的多数认识是正确的;但可以挖掘价值的地方,却往往是模糊的、甚至是错误的。事实上,大数据创造的价值是通过修正人的认识中的不足和偏差来实现的。
人脑中的这些模糊认识,发生在什么情况下呢?
一种情况是受部门利益或流程标准的限制。我们知道,组织大到一定程度,就要划分成若干部门;机制复杂到一定程度,就要流程化、标准化。这些都是促进生产力发展的。但是,这些事情又会制约信息的流动和科学决策,从而容易形成与组织利益不一致的个人和部门利益。同时,“标准”和流程的缺陷与不足,让一些价值损失“合法化”,难以从组织整体的高度优化决策。认清事实,就便于我们创造系统的价值。
经验主义、教条主义、官僚主义与唯命是从,也容易让人形成模糊甚至是错误的认识。早在10多年前,我就意识到: 在创新过程中,需要强调价值创造。强调价值创造的原因,是为了避免误入歧途——离开具体的背景,片面追求好的指标。但最近却越来越感到:这个口号正在误导一些企业。在这个口号的引导下,间接创造价值、系统创造价值都被压制了;与风险同在的价值被压制了;算不清楚收益的工作被压制了;长远的价值被压制了。其实,错的不是口号,而是简单地理解这些口号。语言的表现力是有限的;再明确的语言,到了蠢材那里都会被误解。而唯命是从、经验主义、教条主义、官僚主义,就会让人变蠢。有个段子形象地表达了这种现象。市领导到公园考察:“那些多些绿化那就更好了”于是,园长让人运来了一顿盐(把‘绿化那’听成‘氯化钠’)堆在公园里。这个段子看似好笑,在很多地方其实非常接近现实。
还有人认为:系统的价值损失不大,就不重视这些问题。我却觉得,系统价值其实很大,但主要是被掩盖掉了。另外,考虑到很多制造企业的利润率也只有1%~2%,能把小的方面优化起来,利益也是客观的。其实,把局部优化都做好了,整个企业就可能发生质变——这就好比把坑坑洼洼的道路修成了高速公路,司机就可以放心开高速了。否则,你会花费太多的成本来预防“异常”。
数据如何才能起到上述作用?
老大说过一句话:打铁还需自身硬。本人也有个对应的观点:数据的力量来自于真实和科学。这句话的含义是:人们在推进数字化的时候,常常被认识水平和局部利益所绑架、被政绩观绑架,使得数据不具备科学性和真实性。数据不科学,怎么可能用来修正人的错误认识呢?试想,如果真的是“经济增长就靠统计局了”,国家还能搞好吗?英国有位前首相说:“世界上有三类谎言:谎言,弥天大谎和统计数据。”。 搞数据的人,一定要知道:数据是会骗人的。学会不被数据所骗,是数据分析的基本功。
让数据代表科学和真实,其实并不容易。不仅要看到文化和制度的原因,也有技术和认识方面的原因。这里,就需要有方法论的支持。举个例子,希望引发大家的思考:
1、从A地到B地,平均2小时。其实,从A地到B地有两条路,一条平均半小时,一条平均10小时,只是很少有人走10小时的那条路。那么,如果你不知有两条路,仅知道“从A地到B地,平均2小时。”,真的能代表科学与事实吗?
2、喜欢打牌的人,50%是骗子。我们知道:一般来说,这句话是错的。但是,如果统计的对象是一群罪犯呢?结果还是有可能的。
这两个例子用来供大家思考,并没有什么答案。爱其实,很早之前,人们就提出“数据质量”的概念。数据质量,不仅是精度问题,更是“适用性”问题——适用的结果,才是真实的结果。在笔者看来,在大数据时代,让我们有更好的条件通过各种对比,判断一个结论的“适用性”:因为可以找到一大堆的案例进行对比——语文老师从小就告诉我们:有对比才会有说明。
但是,对比说明就那么容易吗?当然也不容易,需要找到一种与业务知识相关的知识和逻辑,才能便于对比说明。否则,整出一个“关公战秦琼”也难说。有了业务知识,就能避免这些笑话。如果缺少业务知识,就很难判断一个分析结果是假象还是众所周知的无聊论断——如前所述,在工业过程中,系统复杂性很容易导致“发现”大量的假象和无聊的结果。如果没有起码的业务知识,时间就会都浪费在无聊的“发现”上。
现在回到开头:工业大数据分析的最终目的是挖掘价值。但现实中直接的作用在于展示现实——展示那些头脑中被假象和错误观念蒙蔽的现实。在被蒙蔽的现实中,隐含着改进的空间——这就是金子所在的地方。当然,看到价值并不等于能够解决问题——这些问题很可能需要用智能制造的办法来解决。所以,我设想:工业大数据或许可以作为智能制造的先导。智能制造的第一要义是“信息感知”:用大数据感知真实的现实,岂不正是智能制造的先导吗?孙子说“知己知彼百战不殆”,不也是要先做到“信息感知”吗?克服官僚主义,不要也要靠“信息感知”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22