
走出数据分析的几个误区,切忌轻易判断和决定
平时无论是进行用户调研、产品运营还是竞品分析,都少不了对于数据的分析,如果项目中出现某些分歧谁也无法说服谁时,很多时候也都是拿数据说话,可见在开发产品的时候,对数据的统计与分析十分重要。大家都说数据是客观的,但其实数据受背景环境、统计者、统计方法、分析者看法等多重因素影响,以致我们在统计和分析时却常常陷入误区,得不到正确的答案。下面简单说一下关于数据的两个常见误区。
误区一:把某一类型数据当做全部数据导致分析结果错误
先说个小故事:二战时英国空军希望增加飞机的装甲厚度,但如果全部装甲加厚则会降低灵活性,所以最终决定只增加受攻击最多部位的装甲。后来工作人员经过对中弹飞机的统计,发现大部分飞机的机翼弹孔较多,所以决定增加机翼的装甲厚度。后来一个专家说:“可是机头中弹的那些飞机就没有飞回来”。
这个故事里本应是对全部飞机进行分析,但统计样本没有包含已经损毁的飞机,所以得出的结论只是根据部分数据,或者说是根据具有同样特征(受伤)的某一类数据推论出的,并不能代表全部类型的数据,所以得出的结果很可能是错误的。
再看一个例子:前一阵我为了分析人人网,想看看人人网现在的用户访问量是什么状态,于是选择了PV作为观测指标,通过alexa来看人人网的PV在过去一年中呈明显的下降态势,这也印证了我的预期,于是就以此为论据进行了分析。可是后来发现,alexa仅仅统计通过WEB的访问量,而用户移动端的登录并不在统计范围之内!这两年智能手机普及迅速,移动端登录也非常普遍,缺失这部分数据意味着前面统计的数据基本没有意义,因为WEB端访问量的下降有可能是用户访问人人网次数降低,同时也有可能是由PC端向移动端迁移,这个统计就不能作为论据出现了。
从上面这个例子可以看到,我只统计了WEB端的访问情况,认为这就是人人网全部访问量,而忽略了移动端,从而推出了错误的结果。另一个问题就是由于我已经有预期(人人网访问量下降),那么我在为这个结论找寻相关的论据,当找到符合我结论的论据时很容易不去做更多判断就选择有利于自己的数据,这也是数据统计人员常见的问题。
用某一类型数据代替全部数据会误导我们做出错误的判断,在统计时一定要注意这点。这一方面需要意识,在统计、分析数据时要时刻想着还有没有其他的情况,还有没有我们没有想到的数据类型,这些数据是不是能代表全部类型,尝试站在更高的角度去解读这些数据,而不是拿到数据后立刻就盲目分析。另一方面需要知识的累积,比如你知道alexa是如何进行统计的,那么很轻易就会想到还要考虑移动端的情况。知识的累积有助于我们做出准确的判断,这些知识与经验都是从阅读或实践中得来的,平时多做,慢慢累积,时间久了自然会看得更全面。
误区二: 鲜明事件让我们夸大了偶然因素
鲜明的事件更容易占据我们的视线,从而让我们高估事件发生的概率。
比如从年度统计中看到,某基金近两年的收益率达到100%,有某某明星操盘手等等,人们就会争相去购买该基金,同时也会让人们认为买基金就是可以赚钱的。而实际上,绝少有基金可以常年保持这样的收益率,近两年收益前五名的基金很可能在五年后收益率就排行倒数,而世面上大部分基金也无法跑赢大盘,不过人们在记忆中依然会认为买基金确实很赚钱,当年XXX两年益100%呢。两年收益达到100%只是偶然情况,但却由于事件太过鲜明而长久驻扎在人们的心智中。
类似的事还有很多。比如富士康N连跳,大家都觉得这么多人跳楼,富士康肯定太黑暗了,但大家却没有注意2010年深圳地区富士康员工大概有37万人,2010年已知的富士康深圳地区自杀人数为14人,这样的话话自杀率不到十万分之四,而2010年全国的平均自杀率为十万分之二十二(根据维基百科),N连跳自杀率远低于全国自杀率,可见富士康N连跳实际上是一个社会问题,而不仅仅是一个企业的问题,我们太过注重鲜明的事实却忽略了背后整体的概率。还有前两天美国波士顿爆炸案死亡3人,微博上各种祈福,可是阿富汗、伊拉克等国家几乎每天都面临着这些问题,只是由于媒体不会整天报道那里的消息,而天天出现的袭击也麻痹了人们的神经,所以我们只会关注鲜明的波士顿爆炸,而对其他地区天天发生的事情无动于衷。另外比如你周围有人买股票赚了好多钱,可能你也会很想投身股市一试运气,而忽略了散户8赔1平1赚的整体概率。你看到了各种创业成功者的报道,认为自己也可以尝试创业,毕竟成功概率好像也不低。但你不知道那些不成功的人基本没有被报道的机会,而实际上创业成功的人可能不到1%。
说了这么多,其实就是太过鲜明的偶然事件会让我们忽略背后一直存在的整体概率。看到这种数据的时候,不要太过情绪化,你所看到的数据或事件可能只是个例,并不能代表大多数,可以去查查历史情况或平均情况,去找找沉默的用户或数据,切忌轻易就做出判断和决定。要理性看待这些偶然事件,既不盲目跟随,也不对此嗤之以鼻,在明确整体概率的情况下,剔除偶然因素,分析这些偶然事件背后是否存在着某些值得借鉴的地方,从而吸收到自己产品或项目中,以便使自己的产品或要处理的事情有可能成为市场中下一个“偶然事件”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08