
大数据用于商业决策有盲区 “大数据之父”给出新对策
8月25日,舍恩伯格出席了2016IEBE上海高峰论坛,并就企业如何更好地利用大数据进行商业决策等问题接受了界面新闻的专访。
越 来越多的企业开始重视对大数据的分析与利用。据贝恩咨询公司的一份全球调研报告显示,在其调研的超过400家年营业额高于5亿美元的企业中,有大约60% 的企业正积极在大数据方面进行投资,以期获取企业发展的新动力。大数据已经从高端化、差异化的决策工具,渐渐演化为各企业常规化的决策工具。
与此同时,人们对于大数据价值的看法也在发生转变。在大数据研究的早期,极端乐观的态度是当时的主流,但近年来,这类观点开始受到反思与质疑。舍恩伯格对界面新闻记者表示,“如果对大数据解读得过度,实际上就是滥用数据”。
研究大数据,诚然可以让企业更好地发现数据背后的商机,但是,把大数据运用到商业决策也存在不少局限。
以舍恩伯格之见,大数据用于商业决策存在以下三大难点。
难点一:只分析相关关系,导致商业决策出现盲区。
科研领域的很多统计和分析方法未必适合信息时代的商业领域,舍恩伯格对界面新闻记者说:“很多人把数据间的相关关系看成是因果关系,这有可能造成对大数据的过度解读。”美国旧金山游戏公司Zynga的兴衰,正是这样一个例证。
Zynga 公司的联合创始人马克·平卡斯(Mark Pincus)非常笃信大数据的力量。他在公司创立之初就搭建了一套完整的数据分析系统,并组建了以谷歌公司数据分析专家领衔的大数据团队。Zynga公 司在数据仓库、A/B测试工具和大数据分析方法上的领先,使其较其他游戏公司而言,可以更快按用户反馈意见调整各类决策和设置。比如,游戏中的草地到底是 设为红色还是绿色,Zynga公司管理层不做决策,而是同时设置红绿两套颜色方案,哪一边用户付费程度高,Zynga公司就迅速把草地定调为哪种颜色。这 样的优势,也确实让Zynga公司在草创时期获益良多,其最热门的一款游戏《Farm Ville》曾创下月活跃用户8300万的纪录。
但 时间一长,这套体系的弊端也渐渐浮现。这种完全按当前用户喜好决策的模式,或许能分析游戏何以畅销的相关因素,但无法分析游戏何以畅销的因果因素。这使得 Zynga公司的新游戏产品持续产生同质化迭代。公司上下从领导层到各部门员工,关注游戏商业模式创新者日益减少。而在竞争激烈、变化速度极快的游戏行 业,失去创新精神就意味着全面落后。随着Supercell公司、King公司等对手不断推出创新型游戏,Zynga公司也在市值蒸发逾100亿美元后, 逐渐淡出主流游戏公司阵营。
当前,商业环境的多变,令企业在做商业决策时更像是在面临一个充满突变的混沌系统。此时,基于陈旧数据、基于相关关系分析得出的结论,哪怕分析过程中数据量再大、分析方法再繁复,也难保企业不走进决策的盲区。
难点二:完整的大数据难以被企业获取。
所谓“大数据”,指的是总量的全体数据。但囿于人类在数据采集、存储与处理等方面的种种客观限制,要获得这样的数据往往难度巨大。
一方面,完整大数据的采集非常困难。舍恩伯格对界面新闻记者表示:“大数据应用通常分为三个步骤:第一步是搜集数据,第二步是分析数据,第三步是根据数据分析结果做出决策。其中,对很多公司而言,最难的一点就是搜集数据。”
另 一方面,随着数据规模变得越来越庞大,企业的大数据存储与处理能力也在不断受到挑战。在传统介质存储数据已愈发不现实的今天,商业数据的存储往往更依赖云 储存等方式。这样一来,企业在添置云服务及Hadoop分布计算平台等方面的预算,将是一笔不小支出。另外,由于完整的、结构化的数据难以获取,大数据在 很大程度上存在着非结构化的特征。例如,舍恩伯格就在《大数据时代》一书中有写道,“只有5%的数字数据是结构化的且能适用于传统数据库”。可见,企业在 采用智能分析、图像识别等一系列先进算法来使大数据结构化时,将面临高额花费。一旦企业的相关投入跟不上,其所获得的大数据就难言完整。
并 不足够完整的大数据,不仅不能为企业决策提供帮助,反而可能起到误导的作用。在影视行业,就发生过试图利用大数据预测影片票房,结果却与实际票房差距甚远 的事例。比如,爱梦娱乐公司就曾利用其大数据建模,为电影《后会无期》推算了影片总票房收入,其推算结果为4.3亿到4.8亿元。而该影片的实际票房则突 破了6.2亿元。这样的推算结果,显然难以帮助影业公司在产品宣传、渠道建设等方面进行理性决策。事实上,爱奇艺公司CEO龚宇也曾表示,百度和爱奇艺也 有相关的大数据,但因为在这些搜集到的数据中仍有涉及不到的因素,所以这类预测的准确率不算太高。由此可见,只要大数据中仍存在遗漏和偏差,其对企业潜在 的误导可能性就不容忽视。
难点三:大数据分析领域人才短缺。
企业对大数据的运用能力,受制于其人才储备状况。舍恩伯格说,“在大数据领域的研究和发展中,最重要的是人才。”
但 因为大数据分析兴起的时间并不长,且分析团队往往规模不小,所以,即使是顶尖企业在组建大数据分析部门时也难言轻松。以Facebook公司为例,这家硅 谷巨头花了将近四年时间,建立了一个超过30人的团队,才搭建起Facebook自己的数据处理平台。维持这个数据处理平台的常规运行,更是需要超过 100名数据分析专家。又比如,LinkedIn公司建立起自己的大数据部门用了整整六年时间。
如 果这些知名公司,都需要在大数据分析部门的建设上如此费心费力,那么,其他公司在完成此任务时,其难度无疑更甚。麦肯锡咨询公司发布的一份大数据报告就曾 预测,到2018年,仅美国在数据科学家方面的人才缺口就会达到14万至19万人。人员构架的短板,则会导致大数据分析领域先进技术难以得到实施。从贝恩 咨询公司的那份全球调研报告中可以发现,目前仅有38%的企业,能够使用如NoSQL、HPCC以及自动数据清洗算法等大数据领域的先进分析方法。这些都 使得各企业在用大数据帮助企业决策时,其效果需要打上一个不小的问号。
缩小决策范围,才能放大大数据的作用
在运用大数据来辅助企业决策方面,舍恩伯格认为亚马逊是个典型案例。
对 于用户在亚马逊网站上的页面停留时间、评论查看情况、各类关键词的搜索、各种商品的浏览量等大数据,亚马逊公司都会做出细致分析。这家在各个业务环节中都 无不体现着“数据驱动”的公司,也在2016年《财富》全球500强排行榜中跻身前50强,排名达到第44位。诚如舍恩伯格所言,“那些能够理解大数据、 并且懂得让大数据提供价值的公司,将能够有更多的成功可能性。”
大数据能让商业决策变得更盲目,还是更理性?舍恩伯格认为关键还是在于,企业是否对大数据的运用范围进行了缩小,为其树立一些边界。
即使是非常重视大数据力量的亚马逊公司,其在推出Prime等前瞻性业务时,主要依靠的也不是某些大数据,而是该公司创始人杰夫·贝佐斯(Jeff Bezos)的经营哲学与商业洞见。
舍恩伯格向界面新闻记者说:“大数据是一种资源和工具,它的目的应限定为告知,而不是解释。”把“告知”的任务交给大数据,而把“解释”的权利保留在人的手中,才是让大数据参与企业商业决策的良好方法。大数据的真正魅力,恰恰产生于其变“小”之后。
这样,大数据在释放用户信息、改进商业建模、优化决策精细程度等方面的优势,将得到保留。与此同时,管理者也能利用大数据提供的精准量化分析成果,使自己在战略远见与商业洞察方面的优势获得更强有力的支撑。
今年3月,谷歌公司旗下的AlphaGo以4:1的总比分战胜世界围棋冠军李世石,引起了巨大轰动。正如舍恩伯格所述,“现代的人工智能,其进行自我深度学习的根基就是大数据”,AlphaGo,正是人类对大数据决策能力的一次良好运用。
微缩于19X19格的围棋规则边界后,AlphaGo运用大数据完成了远比人类更高明的决策,给予世人以启示。
在舍恩伯格看来,“人类要知晓大数据的力量,同时也要看到大数据的局限”。在未来,一个个有边界限定的“棋盘”,或许才是大数据在商业决策时更好的用武之地。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18