京公网安备 11010802034615号
经营许可证编号:京B2-20210330
看起来大而空,其实是最容易犯的错误。产品经理尤其是数据分析师应当注意,分析某项数据是要解决一定问题或作为某项决策的依据。不能只做单纯分析,分析目的是什么都不知道,又怎么能从图表中发现问题?甚至,又怎么能做出有针对性的图表呢?
很简单的例子就是,不知道要解决什么问题,要针对哪些用户群体,选择的样本容量不对,错把某一类型数据当成全量数据或抽样规则制定错误,直接导致错在起跑线上。
此类误区尤以某一鲜明但偶然的事件易诱人误导。“洛阳纸贵”只是一时现象,不能因它而忽略了产品背后的整体概率。举个例子,在欧洲杯前期,商家H5宣传盛行,某H5公司客服接到很多客户反映,希望自己做好的H5作品可以转送他人或者允许他人修改。产品经理在接到客服反馈后,没有深思产品功能的可延续性周期,迅速立项,联合工程加班加点开发出子账号功能。欧洲杯期间,此功能确实使用概率较高,但欧洲杯过后,H5行业热度降低,子账号功能的使用频度更是直线下降。
系统化的数据分析报表才能够更好的反映出产品或服务存在的问题,要结合营销性思维来分析数据。否则,即便报表做的再漂亮再专业,也只是纸上谈兵。示例:某家服务型公司发现,使用某项功能4次以上的用户忠诚度更高。于是,公司加大了对该功能的宣传推广,EDM、首页推荐各种推送。一段时间后,该功能的使用度大幅提升,但忠诚用户比例并无明显上升。为何?用户并非单一使用该功能,而是在产品的诸多功能使用中该功能频度较高。这是一个整体过程,非单一事件。数据分析逻辑错误,因果关系错判,方向错误结果自然也不理想。
与网站收录高不一定排名好同理。大流量、收录高是获得好转化、好排名的基础,是敲门砖。但绝不是决定性的唯一因素。某些情况下,大流量是获得转化的前提,也就我们平常所说的扩大用户池子。在获得流量后需要考虑如何提高产品转化。但某些情况下,流量转化的高低取决于渠道质量的好坏。此种情况下,最应该做的是选择优质渠道而非研究流量转化。
示例:一篇文章百度带来100个leads,微信带来80个leads。但百度带来的流量最终转化为60个注册用户,微信渠道最终转化了64个注册用户,哪个渠道比较好,不能单纯根据流量来源多少定吧?
不注重数据分析价值时易犯此错误,不懂精细运营也易犯此错误。
延用上述案例。百度带来的流量明显比微信多,转化第一步流失30%,第二步流失10%左右,最终带来流量60%转化的效果; 微信第一步流失仅5%的用户,第二步流失16%。
针对两个渠道,我们就要开始进行数据分析,并思考:什么造成了百度第一步转化流失率高,该采取什么措施。微信第二步流失率高的原因是什么,该怎样解决?
一般而言,我们会通过提高用户体验来提高产品转化率。但是,反之,转化率高就代表用户体验好吗?
像我们曾经遇到的问题,登录密码那块出现问题,用户登录不上,只好重新注册。短期内,用户注册率大幅上升,但造成的用户体验却很不好。
工作中处处留心,可以避免走入很多的误区。产品经理每一个决策几乎都要牵涉到很多方面。磨刀不误砍柴工,多想想再去做,说不定效果更好。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27