
看起来大而空,其实是最容易犯的错误。产品经理尤其是数据分析师应当注意,分析某项数据是要解决一定问题或作为某项决策的依据。不能只做单纯分析,分析目的是什么都不知道,又怎么能从图表中发现问题?甚至,又怎么能做出有针对性的图表呢?
很简单的例子就是,不知道要解决什么问题,要针对哪些用户群体,选择的样本容量不对,错把某一类型数据当成全量数据或抽样规则制定错误,直接导致错在起跑线上。
此类误区尤以某一鲜明但偶然的事件易诱人误导。“洛阳纸贵”只是一时现象,不能因它而忽略了产品背后的整体概率。举个例子,在欧洲杯前期,商家H5宣传盛行,某H5公司客服接到很多客户反映,希望自己做好的H5作品可以转送他人或者允许他人修改。产品经理在接到客服反馈后,没有深思产品功能的可延续性周期,迅速立项,联合工程加班加点开发出子账号功能。欧洲杯期间,此功能确实使用概率较高,但欧洲杯过后,H5行业热度降低,子账号功能的使用频度更是直线下降。
系统化的数据分析报表才能够更好的反映出产品或服务存在的问题,要结合营销性思维来分析数据。否则,即便报表做的再漂亮再专业,也只是纸上谈兵。示例:某家服务型公司发现,使用某项功能4次以上的用户忠诚度更高。于是,公司加大了对该功能的宣传推广,EDM、首页推荐各种推送。一段时间后,该功能的使用度大幅提升,但忠诚用户比例并无明显上升。为何?用户并非单一使用该功能,而是在产品的诸多功能使用中该功能频度较高。这是一个整体过程,非单一事件。数据分析逻辑错误,因果关系错判,方向错误结果自然也不理想。
与网站收录高不一定排名好同理。大流量、收录高是获得好转化、好排名的基础,是敲门砖。但绝不是决定性的唯一因素。某些情况下,大流量是获得转化的前提,也就我们平常所说的扩大用户池子。在获得流量后需要考虑如何提高产品转化。但某些情况下,流量转化的高低取决于渠道质量的好坏。此种情况下,最应该做的是选择优质渠道而非研究流量转化。
示例:一篇文章百度带来100个leads,微信带来80个leads。但百度带来的流量最终转化为60个注册用户,微信渠道最终转化了64个注册用户,哪个渠道比较好,不能单纯根据流量来源多少定吧?
不注重数据分析价值时易犯此错误,不懂精细运营也易犯此错误。
延用上述案例。百度带来的流量明显比微信多,转化第一步流失30%,第二步流失10%左右,最终带来流量60%转化的效果; 微信第一步流失仅5%的用户,第二步流失16%。
针对两个渠道,我们就要开始进行数据分析,并思考:什么造成了百度第一步转化流失率高,该采取什么措施。微信第二步流失率高的原因是什么,该怎样解决?
一般而言,我们会通过提高用户体验来提高产品转化率。但是,反之,转化率高就代表用户体验好吗?
像我们曾经遇到的问题,登录密码那块出现问题,用户登录不上,只好重新注册。短期内,用户注册率大幅上升,但造成的用户体验却很不好。
工作中处处留心,可以避免走入很多的误区。产品经理每一个决策几乎都要牵涉到很多方面。磨刀不误砍柴工,多想想再去做,说不定效果更好。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04