
骗子也玩大数据?来自数据分析师的揭秘
近年在很多揭露诈骗的报道中,常常出现老太太接到电话说孙子出事了、老板接到电话说税务局要查税等案例,为什么现在骗子“对号入座”的本事这么强?
其实,这与骗子们从“撒网式诈骗”向“精准诈骗”升级有着密切关系。这年头竞争这么激烈,有一批骗子已经进化为具有大数据工匠精神的大骗子。据了解,很多骗子在非法获取个人信息之后,会利用大数据方法进行分析,并根据用户信息的特点设计诈骗环节和故事,从而进行“精准式诈骗”。而“航班取消”、“二胎生育退费”、“推荐必涨股票”、“交通违章提醒”、“信用卡提额”等等,都成为骗子惯用的手法。
其实,这些伎俩在专业的数据分析员眼里,其实并非什么神奇的事情。
想要骗到你,骗子最需要以下三类数据
想要成为一个成功率高的大骗子,首先必须获得客户数据,无论这数据是通过广撒 “木马”搜集来的,还是在地下数据交易市场弄来的,在这各种类别的数据中,有三类是骗子们比较关注的:
一是身份类信息,最常见的是姓名与身份证号的表格,这种信息出货多,泄露渠道多样,市场上供大于求。还有些扩充了性别、年龄、工作单位、职级、年收入等,通常来源于收入调查与黑客拖库数据。
二是金融类信息,姓名、银行卡号、信用卡卡号、开卡行、手机、地址、信用额度等数据,此数据大部分来源于制卡邮寄等环节的信息泄露,制卡工厂、快递公司、邮局、物流点都有可能成为泄露点,另一小部分是内鬼数据,市场供不应求、价值极高。
三是金融账号密码,主要是各大银行登录类的,通常是黑客数据,来源于钓鱼、撞库等黑客行为,通过此类数据往往能获得更详细的金融数据,如详细交易流水。
利用特征选择进行“精准欺诈”
一旦骗子拿到了上述这些数据,接下来他就要筛选出易骗人群进行“对号入座”。只要运用大数据的思维方式, “选择易骗人群”这个需求就变成了一个有监督的模型学习问题。而一般针对监督模型的特征选择有如下五种方法:
利用相关性对变量进行排序
自变量x1,x2,..xn,目标变量y,变量xi和y的相关性越高,则xi所包含的用于预测y的信息量越大,从而其排序越高。可以用Pearson相关系数来衡量两个变量的线性相关性:
利用Pearson相关系数来做变量排序有以下问题:
(1)只考虑单一变量的重要性,很多变量单独存在时没有用,但和其他变量结合在一起后则会起到显著作用;
(2)依赖于自变量和目标变量之间的线性假设。
(3)适用于回归问题,即,目标变量y是连续的,对于分类问题应用起来需要谨慎。
单变量分类器
如1里面提到的,对于分类问题,利用相关性对变量进行排序可能会出现问题。一个简单的将上述思路拓展到分类问题的方法是,构造一个单变量分类器,然后依据单个变量对y的预测能力进行排序。单变量的预测能力可以通过IV或者AUC等各种指标进行评估。除此之外,对于分类变量卡方检验也是常见的筛选特征的方法,基本思想是假设两个变量独立,利用列联表的数据计算实际频数与理论频数的差异,如有显著差异则拒绝原假设认为变量间是有相关关系,反之接受原假设。
信息增益
信息增益是一种有效的特征选择方法,它的公式:
对于公式的解释为:原本分类的信息熵减去加入特征后分类的条件熵,两者的差值就是这个特征给分类带来的“净化”程度,如果信息增益越大,该特征对于分类来说就越有价值。其中熵表示不确定程度,分布越均匀,越不确定,熵越大。
逐步回归法
上述的三种方法都是对单变量进行排序,不能考虑这个变量在和其他变量结合在一起时的作用。为了解决这个问题,可以用forward selection、backward selection和stepwise selection的方法。
forward selection是从截距项开始依次按显著性水平将自变量一个一个地加入模型,直到没有满足显著性水平的变量可以加入为止。
backward selection一开始所有变量都在模型中,将不符合显著性水平的变量依次剔除,值得一提的是存在于某些情况多个变量各自对目标变量不显著,但组合起来能显著的提高模型的表现,这种情况在采用forward selection的情况下变量是进入不了模型的,而采用backward selection可以解决这个问题。
如图1(a)所示X2变量(纵轴)能区分分类1、0,X1变量(横轴)完全是不显著的,如图1(b)将X2变量替换成X3变量,两个变量组合的区分能力要好于之前一个变量,完全不显著的变量可能与其他变量组合显著提高区分能力。
stepwise selection,依次按显著性水平将变量一个一个加入,同时对已加入的变量做显著性检验,如果原来变量因为新的变量加入而变得不再显著,那就将它剔除模型。stepwise的优势在于能保证方程中的变量全部显著,而方程外无显著性的变量。
Lasso回归
为进一步消除变量间共线性的问题,可以通过Lasso回归,其本质是通过在损失函数中加入惩罚函数项,在增加细微偏差的同时换取更小的预测方差,并使得模型变量更为精炼、解释性更强。
其中,使用惩罚约束来筛选拟合模型中的系数,当t值小到一定程度,估计参数的估值是0,这样就起到了变量筛选的作用。当t不断增大,选入模型的变量会增多,当t增大到某个值时所有变量都会进入,这是就相当于传统方法的参数估计。
如图3,L1正规化的约束条件是图中坐标中心方形区域,而传统方法偏差最小的估计是以第一象限椭圆区域为中心向外扩散,故最优解是在两者的临界点,即对应方形与椭圆形的切点,此时对应的q1 为0,起到了变量筛选的作用。
大数据如何筛选出信用卡诈骗易骗人群
我们再以信用卡提额诈骗举例。就目前披露的数据显示,某一银行在短短的3个月时间内接到被骗客户投诉数突增6000多起,占到欺诈案件总数的48%以上。为何看似老套的欺诈手段,为什么还有这么多人上当受骗呢?
前面我们提到,特征选择剔除不显著的变量,能有效的提高模型的预测能力,降低模型的复杂度从而减少更多的预测方差,增强模型的可解释性。我们以信用卡申请人的一组信息为样本,模拟一下骗子的筛选过程。
图4
见图4,经过对客户信息进行“特征选择”,可以看出“额度”、“年龄”、“发卡渠道”、“性别”、“婚姻状况”是最具有信息价值的变量,可以从这五个维度对名单进行筛选,从而进行“精准诈骗”。
图5
那么,从选出的五个维度的特征来看,什么样的人最容易上当呢?通过网络申请数据,我们得到图5的结果,其中横坐标表示被欺骗的容易程度,取值越大,越容易被欺骗。从图可以看出:
1、信用卡额度较低但对资金需求量大的年轻人(18-25岁),提额对其诱惑较大,因此容易成为目标人群;
2、通过网络发卡的渠道可能更容易遇到信息泄漏;
3、单身的男性一般有易轻信、嫌麻烦、求助资源少的情况,容易被骗子利用。
老话说,“知己知彼,才能百战不殆”。只有深入的了解骗子们所使用的方法,才能更好的做好反欺诈工作,有针对性地去做一些数据上的深挖。另一方面,电话欺诈的根源仍然是数据泄露的问题,相关企业要加强信息安全方面的投入建设,咱们每个个人更要树立起对隐私数据保护的安全意识,为共同维护安全的信息生态圈而努力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15