京公网安备 11010802034615号
经营许可证编号:京B2-20210330
小白学数据分析--付费渗透率再研究
今天所谈到的东西其实是关于新增付费用户的研究模型的内容,谈到模型,有时候我们过于神话了,模型其实最后就是一套方法论,我自己觉得这倒是自己思维思考最后落地的一个载体,因为思维要实现、训练、评估,最后出现一个载体来落实我们思维的所思所考这个载体就是模型。在没有经过实现、训练、评估之前,算不上一个模型,只有经历以上的过程才是一个模型。
之前有说过付费用户金字塔模型,付费渗透率_I的内容分析,今天就的内容算是对于付费渗透率的再研究。可以肯定一点的是我们之前对于付费用户金子塔的研究包含了所有付费用户的成分,我们之前的方法是从用户贡献度或者说是价值量来衡量,把用户分成了鲸鱼用户、海豚用户、小鱼用户。但是我们今天将从用户的生命周期角度来剖析这个问题,进而引出付费渗透率的再研究。
付费用户的构成

付费用户是一个很复杂的群体,第一层认识使我们普遍认识的,也是我们最多采用的数据分析是层次,但是从第二层开始的细分,对于我们的后续很多分析其实是很有益处的。我有一个猜想:
如果用户金子塔是稳定的,那么付费渗透率的提升是否一定有意义?
提出这个假设的原因在于我们对不同付费群的研究中发现,群体用户的特征在最初的阶段就已经形成了,换句话说我们推测一个用户在一款游戏的付费能力基本上就是圈定了,当然针对这一点很多人会产生质疑,因为通过游戏付费“陷阱”、粘性、延伸消费,进一步扩大需求,刺激消费。这一点确实是存在的,然而如果你仔细去分析数据,很多玩家在整个的生命进程中,消费基本上是在自己的承受范围之内和压力之内。
我们不排除极限用户,比如深度迷恋游戏以至于全面投入游戏中,但是这类的用户所占比例很小。进而从这个角度我们来分析,每个人的付费能力是基本固定的(想要延伸和刺激消费,就得更新、运营),那么我们不断拉高的渗透率其实没什么太大的作用,因为付费的人终究付费,花费多的人(有钱人)自然就愿意花费,如果你的游戏足够值得他们去消费,那些本来付费就很少的人,玩到最后也会花费很少,甚至就是流失,因为游戏太多,选择太多,诱惑太多。这么看,渗透率意义是局限的。
那么在这种情况下,我们可以来做一件事,那就是在付费用户的初期,我们就能够预测和判断付费用户的付费能力,而不是通过后期的实实在在的数据来验证究竟哪些是真正的鲸鱼,哪些是海豚,哪些又是小鱼。这点也恰恰反映了数据分析的价值所在,用过去发现利用未来,而不是用未来验证说明过去,因为如果那样,你没有进步的可能。因为前进与创新的动力来自于对未知的探索和训练,这未知是指导的、灵感的、偶然的。
付费渗透率的结构化
在上次的分析论述中,我其实就是想将付费渗透率结构化,所谓结构化,就是分层建立付费渗透率,因为我们在付费用户的研究上已经建立了金子塔模型,那么过去我们使用一个付费渗透率指标去衡量的方式需要进一步细化,当然这不是说原来的方式不对,因为在一些高级别的分析报告和演讲中,我们就需要这种一个指标就OK了。
然而作为一个分析师,在具体面对业务时,我们不能够就这样的粗放使用一个付费渗透率去分析问题,因为这样会掩盖掉很多的问题。因此我建议的结构就是分层付费渗透率:

W-PUR:鲸鱼用户的付费渗透率
D-PUR:海豚用户的付费渗透率
F-PUR:小鱼用户的付费渗透率
这里面可能就存在一个问题,估计大家都有这个疑问,我们该如何计算这个PUR呢?计算方法如下
鲸鱼用户/活跃用户数量
这里需要解释一下,这里的鲸鱼用户是基于历史鲸鱼用户特征计算出来的本月的鲸鱼用户,本身是一种预测数据,但肯定是付费用户,活跃用户即MAU。
付费渗透率的序列化
留存率我想大概大家都比较熟悉,比如次日、3日、7日、30日、这是从对一批或者一个渠道新登用户的一种观察分析手段,是一种时间序列化的方式,由此我想对于付费渗透率我们也可以进行时间序列化。
即推出首日、次日、7日、30日付费渗透率的,但是明确一点的是这里的用户是新登用户。其定义形式如下:
N日付费渗透率
限定时间内的新登用户,N日付费的用户/限定时间内的新登用户
假设10月8日有500人新登用户,首日50人付费,那么首日的付费率为50/500=10%;
假设10月8日有500人新登用户,10月9日(即次日)有25人付费,则次日付费率为25/500=5%;
这种方式的付费比率从另外一个角度将我们之前统计的付费渗透率进行了细分和立体化,这种付费渗透率细分把新用户和活跃用户的付费问题明确了,因为有的新用户是首日之日便开始付费,而有的新登用户是在一定时期内选择付费,但是达不到活跃用户的标准。这样也能帮助我们更加细致的研究活跃用户的自然付费周期。
以上的是针对具体每日的付费渗透率分析,当然了就像留存率研究一样,我们可以限定时间为周,即一周的新登用户在下周内的付费渗透率研究,这都是可行的。具体还要看自己需要。
此处是借助于留存率的模式进行的付费渗透率研究,方法和之前的其实本质上是一样的,稍加改动,至于该方法是否符合您的产品需要和分析需要,这要根据自己实际情况,这里所述的内容仅供参考,作为探索和讨论之用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01