京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据在零售行业的创新性应用
随着网络和信息技术的不断普及,人类产生的数据量正在呈指数级增长,而云计算的诞生,更是直接把我们送进了大数据时代。“大数据”作为时下最时髦的词汇,开始向各行业渗透辐射,颠覆着很多特别是传统行业的管理和运营思维。
大数据应用,其真正的核心在于挖掘数据中蕴藏的情报价值,而不是简单的数据计算。

其在零售行业有以下四方面的创新性应用:
1、大数据有助于精确零售行业市场定位
成功的品牌离不开精准的市场定位,而基于大数据的市场数据分析和调研是企业进行品牌定位的第一步。零售行业企业要想在市场中分得一杯羹,需要架构大数据战略,拓宽零售行业调研数据的广度和深度,从大数据中了解零售行业市场构成、细分市场特征、消费者需求和竞争者状况等众多因素,在科学系统的信息数据收集、管理、分析的基础上,提出更好的解决问题的方案和建议,保证企业品牌市场定位独具个性化,提高企业品牌市场定位的行业接受度。
企业想进入或开拓某一区域零售行业市场,首先要进行项目评估和可行性分析,只有通过项目评估和可行性分析才能最终决定是否适合进入或者开拓这块市场。如果适合,那么这个区域人口是多少?消费水平怎么样?客户的消费习惯是什么?市场对产品的认知度怎么样?当前的市场供需情况怎么样?公众的消费喜好等等,这些问题背后包含的海量信息构成了零售行业市场调研的大数据,对这些大数据的分析就是我们的市场定位过程。
企业开拓新市场,需要动用巨大的人力、物力和精力,如果市场定位不精准或者出现偏差,其给投资商和企业自身带来后期损失是巨大甚至有时是毁灭性的,由此看出市场定位对零售行业市场开拓的重要性。只有定位准确乃至精确,企业才能构建出满足市场需求地产品,使自己在竞争中立于不败之地。
2、大数据成为零售行业市场营销的利器
从搜索引擎、社交网络的普及到人手一机的智能移动设备,互联网上的信息总量正以极快的速度不断暴涨。每天在微博、微信、论坛、新闻评论、电商平台上分享各种文本、照片、视频、音频、数据等信息高达的几百亿甚至几千亿条,这些信息涵盖着、商家信息、个人信息、行业资讯、产品使用体验、商品浏览记录、商品成交记录、产品价格动态等等海量信息。这些数据通过聚类可以形成零售行业大数据,其背后隐藏的是零售行业的市场需求、竞争情报,闪现着巨大的财富价值。
通过获取数据并加以统计分析来充分了解市场信息,掌握竞争者的商情和动态,知晓产品在竞争群中所处的市场地位,来达到“知彼知己,百战不殆”的目的;同时企业通过积累和挖掘零售行业消费者档案数据,有助于分析顾客的消费行为和价值趣向,便于更好地为消费者服务和发展忠诚顾客。
如果企业收集和整理消费者的消费行为方面的信息数据,如:消费者购买产品的花费、选择的产品渠道、偏好产品的类型、产品使用周期、购买产品的目的、消费者家庭背景和个人消费观等。通过这些数据,建立消费者大数据库,统计和分析来掌握消费者的消费行为、兴趣偏好和产品的市场口碑现状,再根据这些总结出来的现状制定有针对性的营销方案和营销战略,那么其带来的营销效应是可想而知的。因此,可以说大数据中蕴含着出奇制胜的力量,将成为零售行业市场竞争中立于不败之地的利器。
3、大数据支撑零售行业收益管
收益管理意在把合适的产品或服务,在合适的时间,以合适的价格,通过合适的销售渠道,出售给合适的顾客,最终实现企业收益最大化目标。要达到收益管理的目标,需求预测、细分市场和敏感度分析是此项工作的三个重要环节,而这三个的环节推进的基础就是大数据。
需求预测是通过对建构的大数据统计与分析,采取科学的预测方法,通过建立数学模型,使企业管理者掌握和了解零售行业潜在的市场需求,未来一段时间每个细分市场的产品销售量和产品价格走势等,从而使企业能够通过价格的杠杆来调节市场的供需平衡,并针对不同的细分市场来实行动态定价和差别定价。细分市场为企业预测销售量和实行差别定价提供了条件,其科学性体现在通过零售行业市场需求预测来制定和更新价格,最大化各个细分市场的收益。敏感度分析是通过需求价格弹性分析技术,对不同细分市场的价格进行优化,最大限度地挖掘市场潜在的收入。 大数据时代的来临,为企业收益管理工作的开展提供了更加广阔的空间。
4、大数据创新零售行业需求开发
随着论坛、博客、微博、微信、电商平台、点评网等媒介在PC端和移动端的创新和发展,公众分享信息变得更加便捷自由,而公众分享信息的主动性促使了“网络评论”这一新型舆论形式的发展。
在微博、微信、论坛、评论版等平台随处可见网友使用某款产品优点点评、缺点的吐槽、功能需求点评、质量好坏与否点评、外形美观度点评、款式样式点评等信息,这些都构成了产品需求大数据。作为零售行业企业,如果能对网上零售行业的评论数据进行收集,建立网评大数据库,然后再利用分词、聚类、情感分析了解消费者的消费行为、价值趣向、评论中体现的新消费需求和企业产品质量问题,以此来改进和创新产品,量化产品价值,制订合理的价格及提高服务质量,从中获取更大的收益。
大数据,并不是一个神秘的字眼,只要零售行业企业平时善于积累和运用自动化工具收集、挖掘、统计和分析这些数据,都会有效地帮助自己提高市场竞争力和收益能力,盈得良好的效益。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22