京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析常见的3大误区
我们要意识到,用户“怎么说”和“怎么做”不同,甚至经常有矛盾,有时候用户的行为比语言更能反映出他的真实需求。比如用户说在搜索买家的时候应该加一个“按交易额搜索”的条件,也许只是他某次特殊的需要使然,但如果我们听他的做了这个功能,之后通过用户行为的数据分析发现,只有1/10000 的人用过,那就表明我们被用户的说法骗了,但数据永远不会骗我们。不过,在数据分析时也会有一些特定的问题,下面让我们逐一分析。

第一,过于学术,沉迷于“科学研究”。
我在读研的时候,做的就是统计分析、数据挖掘相关的课题,所以工作中开始遇到数据分析的时候,我挺兴奋的,感觉可以好好地研究一番了。但渐渐我体会到,实际的生产和科研是有很大不同的。科学研究通常只注重“性价比”的性,只要结果好,往往不在乎投入,因为相对而言科研的结果不是为了马上应用,而是为了证明实力。但实际生产环境就更注重综合的性价比了,所以我们日常的数据分析方法也就显得不那么严谨了,我特指小步快跑的创业团队,他们可能不需要在每次分析前都去验证样本群体是否符合某种统计分布,也可能不需要用“人工神经网络”等“高科技手段”去预测产品将来的用户数,甚至给出“A>B”的结论时也用不着做“显著性检验”,一切的一切需要的只是一种感觉,一种对数据的敏感,对商业的敏感。
第二,虽然数据不会主动骗人,但我们经常无意或有意地误读数据。
无意地误读数据,举个例子,对一个人群,人们的身高用平均数来衡量是有意义的,因为我们知道身高属于典型的正态分布,中间多两边少,所以一个平均值就能了解群体的大致情况,而对人们的收入,就不能用平均值来衡量了,一个超级富豪和1000个零收入的人一平均,很可能得出人均收入100 万的荒谬结论。这个问题的对策,是学习统计学的知识,这是一个很实际的问题,我们经常在做决策的时候才想起来数据分析,但忽然发现,努力提高自己的水平。主动地误读数据,是比较有趣的现象。在提取数据之前,我们心中通常已经有一些结论了,无非是想验证它,而抱着这点思想,就总能找到数据来证明自己已有的想法,并且技术越娴熟的人越容易做到这点。对于这点,我想一个简单的对策就是对数据保持中立的态度,尽量不要“为了迎合一个观点而去找数据”,减少利益牵扯,比如为了证明老板的判断,或者为了保持自己之前拍脑袋的英明形象等,你明白我的意思。
第三,平时不烧香,临时抱佛脚。
这是一个很实际的问题,我们经常在做决策的时候才想起来数据分析,但忽然发现手头没有数据可分析。一次又一次地发生同样的情况……为了避免,我们应该在产品设计的时候就把数据分析的需求加进去,比如记录每个按钮的点击次数、统计每个用户的登录频率等,这也算一种典型的非功能需求,这样做对产品的可持续发展非常必要。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16