京公网安备 11010802034615号
经营许可证编号:京B2-20210330
抽查(Spot checking)机器学习算法是指如何找出最适合于给定数据集的算法模型。
本文中我将介绍八个常用于抽查的机器学习算法,文中还包括各个算法的R语言代码,你可以将其保存并运用到下一个机器学习项目中。

你无法在建模前就知道哪个算法最适用于你的数据集。
你必须通过反复试验的方法来寻找出可以解决你的问题的最佳算法,我称这个过程为 spot checking。
我们所遇到的问题不是我应该采用哪个算法来处理我的数据集?,而是我应该抽查哪些算法来处理我的数据集?
首先,你可以思考哪些算法可能适用于你的数据集。
其次,我建议尽可能地尝试混合算法并观察哪个方法最适用于你的数据集。
尝试混合算法(如事件模型和树模型)
尝试混合不同的学习算法(如处理相同类型数据的不同算法)
尝试混合不同类型的模型(如线性和非线性函数或者参数和非参数模型)
让我们具体看下如何实现这几个想法。下一章中我们将看到如何在 R 语言中实现相应的机器学习算法。
R 语言中存在数百种可用的机器学习算法。
如果你的项目要求较高的预测精度且你有充足的时间,我建议你可以在实践过程中尽可能多地探索不同的算法。
通常情况下,我们没有太多的时间用于测试,因此我们需要了解一些常用且重要的算法。
本章中你将会接触到一些 R 语言中经常用于抽查处理的线性和非线性算法,但是其中并不包括类似于boosting和bagging的集成算法。
每个算法都会从两个视角进行呈现:
1.常规的训练和预测方法
2.caret包的用法
你需要知道给定算法对应的软件包和函数,同时你还需了解如何利用caret包实现这些常用的算法,从而你可以利用caret包的预处理、算法评估和参数调优的能力高效地评估算法的精度。
本文中将用到两个标准的数据集:
1.回归模型:BHD(Boston Housing Dataset)
2.分类模型: PIDD(Pima Indians Diabetes Dataset)
本文中的算法将被分成两组进行介绍:
1.线性算法:简单、较大的偏倚、运算速度快
2.非线性算法:复杂、较大的方差、高精确度
下文中的所有代码都是完整的,因此你可以将其保存下来并运用到下个机器学习项目中。
这类方法对模型的函数形式有严格的假设条件,虽然这些方法的运算速度快,但是其结果偏倚较大。
这类模型的最终结果通常易于解读,因此如果线性模型的结果足够精确,那么你没有必要采用较为复杂的非线性模型。
线性回归模型
stat包中的lm()函数可以利用最小二乘估计拟合线性回归模型。
# load the library
library(mlbench)
# load data
data(BostonHousing)
# fit model
fit <- lm(mdev~>, BostonHousing)
# summarize the fit
print(fit)
# make predictions
predictions <- predict(fit, BostonHousing)
# summarize accuracy
mse <- mean((BostonHousing$medv – predictions)^2)
print(mse)
# caret
# load libraries
library(caret)
library(mlbench)
# load dataset
data(BostonHousing)
# train
set.seed(7)
control <- trainControl(method=”cv”, number=5)
fit.lm <- train(medv~., data=BostonHousing, method=”lm”, metric=”RMSE”, preProc=c(“center”, “scale”), trControl=control)
# summarize fit
print(fit.lm)
罗吉斯回归模型
stat包中glm()函数可以用于拟合广义线性模型。它可以用于拟合处理二元分类问题的罗吉斯回归模型。
# load the library
library(mlbench)
# Load the dataset
data(PimaIndiansDiabetes)
# fit model
fit <- glm(diabetes~., data=PimaIndiansDiabetes, family=binomial(link=’logit’))
# summarize the fit
print(fit)
# make predictions
probabilities <- predict(fit, PimaIndiansDiabetes[,1:8], type=’response’)
predictions <- ifelse(probabilities > 0.5,’pos’,’neg’)
# summarize accuracy
table(predictions, PimaIndiansDiabetes$diabetes)
# caret
# load libraries
library(caret)
library(mlbench)
# Load the dataset
data(PimaIndiansDiabetes)
# train
set.seed(7)
control <- trainControl(method=”cv”, number=5)
fit.glm <- train(diabetes~., data=PimaIndiansDiabetes, method=”glm”, metric=”Accuracy”, preProc=c(“center”, “scale”), trControl=control)
# summarize fit
print(fit.glm)
线性判别分析
MASS包中的lda()函数可以用于拟合线性判别分析模型。
# load the libraries
library(MASS)
library(mlbench)
# Load the dataset
data(PimaIndiansDiabetes)
# fit model
fit <- lda(diabetes~., data=PimaIndiansDiabetes)
# summarize the fit
print(fit)
# make predictions
predictions <- predict(fit, PimaIndiansDiabetes[,1:8])$class
# summarize accuracy
table(predictions, PimaIndiansDiabetes$diabetes)
# caret
# load libraries
library(caret)
library(mlbench)
# Load the dataset
data(PimaIndiansDiabetes)
# train
set.seed(7)
control <- trainControl(method=”cv”, number=5)
fit.lda <- train(diabetes~., data=PimaIndiansDiabetes, method=”lda”, metric=”Accuracy”, preProc=c(“center”, “scale”), trControl=control)
# summarize fit
print(fit.lda)
glmnet包中的glmnet()函数可以用于拟合正则化分类或回归模型。
分类模型:
# load the library
library(glmnet)
library(mlbench)
# load data
data(PimaIndiansDiabetes)
x <- as.matrix(PimaIndiansDiabetes[,1:8])
y <- as.matrix(PimaIndiansDiabetes[,9])
# fit model
fit <- glmnet(x, y, family=”binomial”, alpha=0.5, lambda=0.001)
# summarize the fit
print(fit)
# make predictions
predictions <- predict(fit, x, type=”class”)
# summarize accuracy
table(predictions, PimaIndiansDiabetes$diabetes)
# caret
# load libraries
library(caret)
library(mlbench)
library(glmnet)
# Load the dataset
data(PimaIndiansDiabetes)
# train
set.seed(7)
control <- trainControl(method=”cv”, number=5)
fit.glmnet <- train(diabetes~., data=PimaIndiansDiabetes, method=”glmnet”, metric=”Accuracy”, preProc=c(“center”, “scale”), trControl=control)
# summarize fit
print(fit.glmnet)
回归模型:
# load the libraries
library(glmnet)
library(mlbench)
# load data
data(BostonHousing)
BostonHousing$chas <- as.numeric(as.character(BostonHousing$chas))
x <- as.matrix(BostonHousing[,1:13])
y <- as.matrix(BostonHousing[,14])
# fit model
fit <- glmnet(x, y, family=”gaussian”, alpha=0.5, lambda=0.001)
# summarize the fit
print(fit)
# make predictions
predictions <- predict(fit, x, type=”link”)
# summarize accuracy
mse <- mean((y – predictions)^2)
print(mse)
# caret
# load libraries
library(caret)
library(mlbench)
library(glmnet)
# Load the dataset
data(BostonHousing)
# train
set.seed(7)
control <- trainControl(method=”cv”, number=5)
fit.glmnet <- train(medv~., data=BostonHousing, method=”glmnet”, metric=”RMSE”, preProc=c(“center”, “scale”), trControl=control)
# summarize fit
print(fit.glmnet)
非线性算法对模型函数形式的限定较少,这类模型通常具有高精度和方差大的特点。
caret包中的knn3()函数并没有建立模型,而是直接对训练集数据作出预测。它既可以用于分类模型也可以用于回归模型。
分类模型:
# knn direct classification
# load the libraries
library(caret)
library(mlbench)
# Load the dataset
data(PimaIndiansDiabetes)
# fit model
fit <- knn3(diabetes~., data=PimaIndiansDiabetes, k=3)
# summarize the fit
print(fit)
# make predictions
predictions <- predict(fit, PimaIndiansDiabetes[,1:8], type=”class”)
# summarize accuracy
table(predictions, PimaIndiansDiabetes$diabetes)
# caret
# load libraries
library(caret)
library(mlbench)
# Load the dataset
data(PimaIndiansDiabetes)
# train
set.seed(7)
control <- trainControl(method=”cv”, number=5)
fit.knn <- train(diabetes~., data=PimaIndiansDiabetes, method=”knn”, metric=”Accuracy”, preProc=c(“center”, “scale”), trControl=control)
# summarize fit
print(fit.knn)
回归模型:
# load the libraries
library(caret)
library(mlbench)
# load data
data(BostonHousing)
BostonHousing$chas <- as.numeric(as.character(BostonHousing$chas))
x <- as.matrix(BostonHousing[,1:13])
y <- as.matrix(BostonHousing[,14])
# fit model
fit <- knnreg(x, y, k=3)
# summarize the fit
print(fit)
# make predictions
predictions <- predict(fit, x)
# summarize accuracy
mse <- mean((BostonHousing$medv – predictions)^2)
print(mse)
# caret
# load libraries
library(caret)
data(BostonHousing)
# Load the dataset
data(BostonHousing)
# train
set.seed(7)
control <- trainControl(method=”cv”, number=5)
fit.knn <- train(medv~., data=BostonHousing, method=”knn”, metric=”RMSE”, preProc=c(“center”, “scale”), trControl=control)
# summarize fit
print(fit.knn)
e1071包中的naiveBayes()函数可用于拟合分类问题中的朴素贝叶斯模型。
# load the libraries
library(e1071)
library(mlbench)
# Load the dataset
data(PimaIndiansDiabetes)
# fit model
fit <- naiveBayes(diabetes~., data=PimaIndiansDiabetes)
# summarize the fit
print(fit)
# make predictions
predictions <- predict(fit, PimaIndiansDiabetes[,1:8])
# summarize accuracy
table(predictions, PimaIndiansDiabetes$diabetes)
# caret
# load libraries
library(caret)
library(mlbench)
# Load the dataset
data(PimaIndiansDiabetes)
# train
set.seed(7)
control <- trainControl(method=”cv”, number=5)
fit.nb <- train(diabetes~., data=PimaIndiansDiabetes, method=”nb”, metric=”Accuracy”, trControl=control)
# summarize fit
print(fit.nb)
kernlab包中的ksvm()函数可用于拟合分类和回归问题中的支持向量机模型。
分类模型:
# Classification Example:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09