京公网安备 11010802034615号
经营许可证编号:京B2-20210330
抽查(Spot checking)机器学习算法是指如何找出最适合于给定数据集的算法模型。
本文中我将介绍八个常用于抽查的机器学习算法,文中还包括各个算法的R语言代码,你可以将其保存并运用到下一个机器学习项目中。

你无法在建模前就知道哪个算法最适用于你的数据集。
你必须通过反复试验的方法来寻找出可以解决你的问题的最佳算法,我称这个过程为 spot checking。
我们所遇到的问题不是我应该采用哪个算法来处理我的数据集?,而是我应该抽查哪些算法来处理我的数据集?
首先,你可以思考哪些算法可能适用于你的数据集。
其次,我建议尽可能地尝试混合算法并观察哪个方法最适用于你的数据集。
尝试混合算法(如事件模型和树模型)
尝试混合不同的学习算法(如处理相同类型数据的不同算法)
尝试混合不同类型的模型(如线性和非线性函数或者参数和非参数模型)
让我们具体看下如何实现这几个想法。下一章中我们将看到如何在 R 语言中实现相应的机器学习算法。
R 语言中存在数百种可用的机器学习算法。
如果你的项目要求较高的预测精度且你有充足的时间,我建议你可以在实践过程中尽可能多地探索不同的算法。
通常情况下,我们没有太多的时间用于测试,因此我们需要了解一些常用且重要的算法。
本章中你将会接触到一些 R 语言中经常用于抽查处理的线性和非线性算法,但是其中并不包括类似于boosting和bagging的集成算法。
每个算法都会从两个视角进行呈现:
1.常规的训练和预测方法
2.caret包的用法
你需要知道给定算法对应的软件包和函数,同时你还需了解如何利用caret包实现这些常用的算法,从而你可以利用caret包的预处理、算法评估和参数调优的能力高效地评估算法的精度。
本文中将用到两个标准的数据集:
1.回归模型:BHD(Boston Housing Dataset)
2.分类模型: PIDD(Pima Indians Diabetes Dataset)
本文中的算法将被分成两组进行介绍:
1.线性算法:简单、较大的偏倚、运算速度快
2.非线性算法:复杂、较大的方差、高精确度
下文中的所有代码都是完整的,因此你可以将其保存下来并运用到下个机器学习项目中。
这类方法对模型的函数形式有严格的假设条件,虽然这些方法的运算速度快,但是其结果偏倚较大。
这类模型的最终结果通常易于解读,因此如果线性模型的结果足够精确,那么你没有必要采用较为复杂的非线性模型。
线性回归模型
stat包中的lm()函数可以利用最小二乘估计拟合线性回归模型。
# load the library
library(mlbench)
# load data
data(BostonHousing)
# fit model
fit <- lm(mdev~>, BostonHousing)
# summarize the fit
print(fit)
# make predictions
predictions <- predict(fit, BostonHousing)
# summarize accuracy
mse <- mean((BostonHousing$medv – predictions)^2)
print(mse)
# caret
# load libraries
library(caret)
library(mlbench)
# load dataset
data(BostonHousing)
# train
set.seed(7)
control <- trainControl(method=”cv”, number=5)
fit.lm <- train(medv~., data=BostonHousing, method=”lm”, metric=”RMSE”, preProc=c(“center”, “scale”), trControl=control)
# summarize fit
print(fit.lm)
罗吉斯回归模型
stat包中glm()函数可以用于拟合广义线性模型。它可以用于拟合处理二元分类问题的罗吉斯回归模型。
# load the library
library(mlbench)
# Load the dataset
data(PimaIndiansDiabetes)
# fit model
fit <- glm(diabetes~., data=PimaIndiansDiabetes, family=binomial(link=’logit’))
# summarize the fit
print(fit)
# make predictions
probabilities <- predict(fit, PimaIndiansDiabetes[,1:8], type=’response’)
predictions <- ifelse(probabilities > 0.5,’pos’,’neg’)
# summarize accuracy
table(predictions, PimaIndiansDiabetes$diabetes)
# caret
# load libraries
library(caret)
library(mlbench)
# Load the dataset
data(PimaIndiansDiabetes)
# train
set.seed(7)
control <- trainControl(method=”cv”, number=5)
fit.glm <- train(diabetes~., data=PimaIndiansDiabetes, method=”glm”, metric=”Accuracy”, preProc=c(“center”, “scale”), trControl=control)
# summarize fit
print(fit.glm)
线性判别分析
MASS包中的lda()函数可以用于拟合线性判别分析模型。
# load the libraries
library(MASS)
library(mlbench)
# Load the dataset
data(PimaIndiansDiabetes)
# fit model
fit <- lda(diabetes~., data=PimaIndiansDiabetes)
# summarize the fit
print(fit)
# make predictions
predictions <- predict(fit, PimaIndiansDiabetes[,1:8])$class
# summarize accuracy
table(predictions, PimaIndiansDiabetes$diabetes)
# caret
# load libraries
library(caret)
library(mlbench)
# Load the dataset
data(PimaIndiansDiabetes)
# train
set.seed(7)
control <- trainControl(method=”cv”, number=5)
fit.lda <- train(diabetes~., data=PimaIndiansDiabetes, method=”lda”, metric=”Accuracy”, preProc=c(“center”, “scale”), trControl=control)
# summarize fit
print(fit.lda)
glmnet包中的glmnet()函数可以用于拟合正则化分类或回归模型。
分类模型:
# load the library
library(glmnet)
library(mlbench)
# load data
data(PimaIndiansDiabetes)
x <- as.matrix(PimaIndiansDiabetes[,1:8])
y <- as.matrix(PimaIndiansDiabetes[,9])
# fit model
fit <- glmnet(x, y, family=”binomial”, alpha=0.5, lambda=0.001)
# summarize the fit
print(fit)
# make predictions
predictions <- predict(fit, x, type=”class”)
# summarize accuracy
table(predictions, PimaIndiansDiabetes$diabetes)
# caret
# load libraries
library(caret)
library(mlbench)
library(glmnet)
# Load the dataset
data(PimaIndiansDiabetes)
# train
set.seed(7)
control <- trainControl(method=”cv”, number=5)
fit.glmnet <- train(diabetes~., data=PimaIndiansDiabetes, method=”glmnet”, metric=”Accuracy”, preProc=c(“center”, “scale”), trControl=control)
# summarize fit
print(fit.glmnet)
回归模型:
# load the libraries
library(glmnet)
library(mlbench)
# load data
data(BostonHousing)
BostonHousing$chas <- as.numeric(as.character(BostonHousing$chas))
x <- as.matrix(BostonHousing[,1:13])
y <- as.matrix(BostonHousing[,14])
# fit model
fit <- glmnet(x, y, family=”gaussian”, alpha=0.5, lambda=0.001)
# summarize the fit
print(fit)
# make predictions
predictions <- predict(fit, x, type=”link”)
# summarize accuracy
mse <- mean((y – predictions)^2)
print(mse)
# caret
# load libraries
library(caret)
library(mlbench)
library(glmnet)
# Load the dataset
data(BostonHousing)
# train
set.seed(7)
control <- trainControl(method=”cv”, number=5)
fit.glmnet <- train(medv~., data=BostonHousing, method=”glmnet”, metric=”RMSE”, preProc=c(“center”, “scale”), trControl=control)
# summarize fit
print(fit.glmnet)
非线性算法对模型函数形式的限定较少,这类模型通常具有高精度和方差大的特点。
caret包中的knn3()函数并没有建立模型,而是直接对训练集数据作出预测。它既可以用于分类模型也可以用于回归模型。
分类模型:
# knn direct classification
# load the libraries
library(caret)
library(mlbench)
# Load the dataset
data(PimaIndiansDiabetes)
# fit model
fit <- knn3(diabetes~., data=PimaIndiansDiabetes, k=3)
# summarize the fit
print(fit)
# make predictions
predictions <- predict(fit, PimaIndiansDiabetes[,1:8], type=”class”)
# summarize accuracy
table(predictions, PimaIndiansDiabetes$diabetes)
# caret
# load libraries
library(caret)
library(mlbench)
# Load the dataset
data(PimaIndiansDiabetes)
# train
set.seed(7)
control <- trainControl(method=”cv”, number=5)
fit.knn <- train(diabetes~., data=PimaIndiansDiabetes, method=”knn”, metric=”Accuracy”, preProc=c(“center”, “scale”), trControl=control)
# summarize fit
print(fit.knn)
回归模型:
# load the libraries
library(caret)
library(mlbench)
# load data
data(BostonHousing)
BostonHousing$chas <- as.numeric(as.character(BostonHousing$chas))
x <- as.matrix(BostonHousing[,1:13])
y <- as.matrix(BostonHousing[,14])
# fit model
fit <- knnreg(x, y, k=3)
# summarize the fit
print(fit)
# make predictions
predictions <- predict(fit, x)
# summarize accuracy
mse <- mean((BostonHousing$medv – predictions)^2)
print(mse)
# caret
# load libraries
library(caret)
data(BostonHousing)
# Load the dataset
data(BostonHousing)
# train
set.seed(7)
control <- trainControl(method=”cv”, number=5)
fit.knn <- train(medv~., data=BostonHousing, method=”knn”, metric=”RMSE”, preProc=c(“center”, “scale”), trControl=control)
# summarize fit
print(fit.knn)
e1071包中的naiveBayes()函数可用于拟合分类问题中的朴素贝叶斯模型。
# load the libraries
library(e1071)
library(mlbench)
# Load the dataset
data(PimaIndiansDiabetes)
# fit model
fit <- naiveBayes(diabetes~., data=PimaIndiansDiabetes)
# summarize the fit
print(fit)
# make predictions
predictions <- predict(fit, PimaIndiansDiabetes[,1:8])
# summarize accuracy
table(predictions, PimaIndiansDiabetes$diabetes)
# caret
# load libraries
library(caret)
library(mlbench)
# Load the dataset
data(PimaIndiansDiabetes)
# train
set.seed(7)
control <- trainControl(method=”cv”, number=5)
fit.nb <- train(diabetes~., data=PimaIndiansDiabetes, method=”nb”, metric=”Accuracy”, trControl=control)
# summarize fit
print(fit.nb)
kernlab包中的ksvm()函数可用于拟合分类和回归问题中的支持向量机模型。
分类模型:
# Classification Example:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10