京公网安备 11010802034615号
经营许可证编号:京B2-20210330
近年来,随着大数据在Google、Facebook等企业的成功应用,很多传统企业和初创公司都转向应用大数据技术挖掘数据金矿。现有企业累计了大量的工业数据,但是大数据的开发的复杂流程阻碍了企业快速从工业数据和商业数据中挖掘价值。行业专家(算法研究者)精通行业数据分析,却受限于编程复杂度和缺乏快速部署算法的方法,使很多创造性想法无法得到有效实施。在这个技术飞跃的时代,拥有大量工业数据的企业和技术专家们应该如何开展大数据技术的研发工作?
大数据从业者在数据搜集、数据探索、开发和部署的每一个阶段都会碰到各式各样的难题,不得不在不同的开发环境中进行切换,并为此付出了大量额外的时间和人力成本。在现有的数据资源上,如何对数据进行清洗、整合以及探索性研究,正是数据专家们发挥专长的地方;而这个过程所耗费的时间往往是编程实现的好几倍。今天多数的大数据方案都是依托Hadoop环境来做结构化和非结构化数据处理,如何把自己的Hadoop算法快速部署到实际的生产环境当中去,对很多企业的大数据部署也提出了挑战。
MathWorks公司的MATLAB软件在科研和工业生产上拥有大量的用户,而且在数据分析领域,MATLAB作为传统数据分析专业软件独树一帜。最近,针对大数据研发过程中关键点,基于大家熟悉的 MATLAB 开发环境,该公司提出一个完整的解决方案。下面我们就来看看他们关于大数据分析的流程,来自MathWorks公司的资深应用工程师陈建平对记者做了相关介绍。
从流程角度上看,整个大数据处理可以分成4个主要步骤。第一步是数据的搜集和存储;第二步是通过数据分析技术对数据进行探索性研究,包括无关数据的剔除即数据清洗,和寻找数据的模式探索数据的价值所在; 第三步是在基本数据分析的基础上,选择和开发数据分析算法,对数据进行建模。从数据中提取有价值的信息,这其实是真正的大数据的学习过程。这其中会涉及很多算法和技术,比如机器学习算法等; 最后一步是对模型的部署和应用,即把研究出来的模型应用到生产环境之中。
我们分别从流程和技术两个角度来看一下MATLAB开发大数据应用的特点。从流程上,我们可以把大数据应用的过程分成四步。
硬件数据的采集。MATLAB一直以来都硬件设备有着良好的支持,从专业数据采集设备,比如数据采集卡和测试仪器,到通用硬件,比如摄像机,都有统一的访问接口支持直接从MATLAB语言中抓取数据。结合不同的数据搜集、存储和访问手段,在一个平台中就能够完成大多数数据搜集和整理的工作。
MATLAB的工具箱覆盖了各个不同的领域,行业专家可以采用相应的工具箱,对数据进行初步处理和特征探索,比如通过滤波等信号处理手段滤去噪声,或者通过频谱检测,寻找语音数据的嚣叫。这是通用数据分析工具无法替代的。
第三步,数据建模。经过数据清洗、探索性分析,目的就是为了建立一个有效模型用于工业生产。典型的手段是求助于统计分析方法和机器学习算法,寻求合理的数学模型。一直以来,MATLAB就是一个传统的数据分析平台,最近几年MathWorks结合最新的机器学习算法和深度学习算法,推出了升级了神经网络和统计工具箱。机器学习不再需要编写大量的代码了,通过采用分类和聚类App,可以对数据进行拖放就可以完成机器学习的过程。直接从App分析结果中就可以得到最佳的预测模型。
现在,行业专家可以在前一个阶段得到的模型基础上,通过App和几个鼠标点击就可以把MATLAB代码发布成可执行程序、动态链接库、JAVA或者.NET包。部署工程师可以在这些结果上进行集成即可,减少了重新开发潜在的错误,加速了开发迭代的过程。

不管从大数据的处理流程上,还是从数据规模上,作为一个完整的开发平台,MATLAB提供了从数据搜集、数据分析、数据建模和应用部署等全面解决方案。用户可以不用过多关注编程细节,只需把有限的时间和资源投入到有效的分析过程中,让大数据应用开发成为一件简单轻松的事情。

数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16