京公网安备 11010802034615号
经营许可证编号:京B2-20210330
近年来,随着大数据在Google、Facebook等企业的成功应用,很多传统企业和初创公司都转向应用大数据技术挖掘数据金矿。现有企业累计了大量的工业数据,但是大数据的开发的复杂流程阻碍了企业快速从工业数据和商业数据中挖掘价值。行业专家(算法研究者)精通行业数据分析,却受限于编程复杂度和缺乏快速部署算法的方法,使很多创造性想法无法得到有效实施。在这个技术飞跃的时代,拥有大量工业数据的企业和技术专家们应该如何开展大数据技术的研发工作?
大数据从业者在数据搜集、数据探索、开发和部署的每一个阶段都会碰到各式各样的难题,不得不在不同的开发环境中进行切换,并为此付出了大量额外的时间和人力成本。在现有的数据资源上,如何对数据进行清洗、整合以及探索性研究,正是数据专家们发挥专长的地方;而这个过程所耗费的时间往往是编程实现的好几倍。今天多数的大数据方案都是依托Hadoop环境来做结构化和非结构化数据处理,如何把自己的Hadoop算法快速部署到实际的生产环境当中去,对很多企业的大数据部署也提出了挑战。
MathWorks公司的MATLAB软件在科研和工业生产上拥有大量的用户,而且在数据分析领域,MATLAB作为传统数据分析专业软件独树一帜。最近,针对大数据研发过程中关键点,基于大家熟悉的 MATLAB 开发环境,该公司提出一个完整的解决方案。下面我们就来看看他们关于大数据分析的流程,来自MathWorks公司的资深应用工程师陈建平对记者做了相关介绍。
从流程角度上看,整个大数据处理可以分成4个主要步骤。第一步是数据的搜集和存储;第二步是通过数据分析技术对数据进行探索性研究,包括无关数据的剔除即数据清洗,和寻找数据的模式探索数据的价值所在; 第三步是在基本数据分析的基础上,选择和开发数据分析算法,对数据进行建模。从数据中提取有价值的信息,这其实是真正的大数据的学习过程。这其中会涉及很多算法和技术,比如机器学习算法等; 最后一步是对模型的部署和应用,即把研究出来的模型应用到生产环境之中。
我们分别从流程和技术两个角度来看一下MATLAB开发大数据应用的特点。从流程上,我们可以把大数据应用的过程分成四步。
硬件数据的采集。MATLAB一直以来都硬件设备有着良好的支持,从专业数据采集设备,比如数据采集卡和测试仪器,到通用硬件,比如摄像机,都有统一的访问接口支持直接从MATLAB语言中抓取数据。结合不同的数据搜集、存储和访问手段,在一个平台中就能够完成大多数数据搜集和整理的工作。
MATLAB的工具箱覆盖了各个不同的领域,行业专家可以采用相应的工具箱,对数据进行初步处理和特征探索,比如通过滤波等信号处理手段滤去噪声,或者通过频谱检测,寻找语音数据的嚣叫。这是通用数据分析工具无法替代的。
第三步,数据建模。经过数据清洗、探索性分析,目的就是为了建立一个有效模型用于工业生产。典型的手段是求助于统计分析方法和机器学习算法,寻求合理的数学模型。一直以来,MATLAB就是一个传统的数据分析平台,最近几年MathWorks结合最新的机器学习算法和深度学习算法,推出了升级了神经网络和统计工具箱。机器学习不再需要编写大量的代码了,通过采用分类和聚类App,可以对数据进行拖放就可以完成机器学习的过程。直接从App分析结果中就可以得到最佳的预测模型。
现在,行业专家可以在前一个阶段得到的模型基础上,通过App和几个鼠标点击就可以把MATLAB代码发布成可执行程序、动态链接库、JAVA或者.NET包。部署工程师可以在这些结果上进行集成即可,减少了重新开发潜在的错误,加速了开发迭代的过程。

不管从大数据的处理流程上,还是从数据规模上,作为一个完整的开发平台,MATLAB提供了从数据搜集、数据分析、数据建模和应用部署等全面解决方案。用户可以不用过多关注编程细节,只需把有限的时间和资源投入到有效的分析过程中,让大数据应用开发成为一件简单轻松的事情。

数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16