
机器学习中的许多数据挖掘"数据分析师" 方法主要是针对数值型数据的,算法也很偏向数理方法(例如支持向量机)。而分类数据(非数值型数据),其本质不过是简单的计数,针对这类数据的一个简单实 用的方法就是关联规则挖掘法,谷歌的MapReduce也为这类算法提供了很好的软件构架。下面我们就来讨论一下应用关联规则法的有趣实例。
关 联规则法的核心在于研究一些经常相伴发生的事件之间的关系,特别是当他们同时发生的频率远远超出预期时。它最早被用于超市销售,因此又被称为市场购物篮分 析法。举一个数据挖掘教科书中的关于啤酒和尿布关联性的经典案例-去超市买啤酒的男人同时也经常买尿布。假如超市销售量有如下数据:
总销售量:600000
尿布销售量:7500(1.25%)
啤酒销售量:60000(10%)
尿布和啤酒共同销售量:6000(1%)
如 果啤酒和尿布之间没有关联的话(即他们之间是统计上独立的),那么按照啤酒在总销售量中的比例来计算,我们预计只有10%的尿布购买者也会买啤酒。但实际 情况却是80%(=6000/7500)的尿布购买者都购买了啤酒,是我们预计的8倍。这个值在关联规则法中被称作电梯值(Lift),即事件X和Y实际 同时发生的频率和预期同时发生的频率之间的比例(Lift=P(x,y)/[P(x)P(y)])。如果事件X和Y相互独立,那么 P(x,y)=P(x)P(y),相应的电梯值即为1。而如果X和Y是互斥事件,则会产生小于1 的电梯值。在这个案例中,关联规则的结论就是尿布购买者也会购买啤酒的电梯值是8。
以 上是一个假设的案例,如此高的电梯值在实际生活中非常罕见,但也绝非不可能。2004年佛罗里达州经历了一系列飓风。第一场飓风之后,沃尔玛利用了他们大 量的销售数据来研究顾客在飓风来临之前会买什么。他们发现一个商品的销售量是平时的7倍,这个电梯值在现实生活中非常高的。这个商品既不是瓶装水,也不是 电池,啤酒,手电筒,发电机等等,而是草莓果酱吐司饼干!吐司饼干之所以在飓风来临之前销量大增也许是因为它不需要冰箱保存,不需要烹饪,而且独立包装, 保质期很长,同时本来大家也都很喜欢它。
尽管这个发现有些出乎意料,但是沃尔玛利用关联规则的分析补货了大量的草莓吐司饼干,创造了一个双赢的结果-沃尔玛大大增加了销量,顾客买到了满意的商品。 还有一个大型电子商品零售店也成功地利用关联规则法增加了商品销量。商家"数据分析师"根据零售数据,发现许多购买播放器和录影机的顾客会在3-4个月后购买摄影机。于是利用这个关系,商家会给所有购买播放器或者录影机的顾客几个月后邮寄摄影机折扣券,由此来吸引更多顾客购买摄影机。
除 了商业营销,关联规则法在科学研究上也有很多应用。乔治梅森大学的一位地质信息教授利用关联规则研究了飓风的内部风速,风眼气压,风切变,降雨量,方向和 速度等等因素和飓风最终等级之间的关系,最后成功建立了新的模型可以更精确地预测飓风的等级。还有一位在美国国家航天中心实习的高中生利用关联规则法研究 了太阳风暴之后太阳高能粒子到达地球的时间关系。他利用卫星收集到的太阳风暴之后太阳和地球磁场的一些特征因素数据,探究了两者之间关系随时间的变化,即 在太阳风暴一小时,两小时,三小时,四小时后,地球磁场的活跃度变化。结果发现在太阳风暴后2-3小时左右地球磁场最活跃,即太阳高能粒子到达地球的时 间。
以 上这些例子向我们展示了在做大数据挖掘时两个重要方法: 研究非数值型数据时,我们在挖掘因果关系之前,可关注事件之间的关联性; 如果数据在随时间变化,注意事件之间的关联是否会在某个时间点达到最强。现今越来越多的数据被大量收集,科技平台也越来越发达,许多事物之间意想不到的关 联正等待我们发现。那么就让我们从计数开始吧!数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15