京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据是互联网时代的重要资源
在这个互联网时代,数据分析时代,大数据(Big Data,BD)是构成信息化世界的基本元素,组成了互联网上纷繁庞杂的知识和数据资源。数据分析师通过合理的挖掘工具进行分析处理,可以形成国家、企业、机构管理运营的策略指南,可以是科研中的离子对撞机每秒运行产生的量子世界,也可以是有效避免和防范自然灾害的预警机制,还可以是反对恐怖主义的有力武器……
一、大数据概念的起源
1980年,未来学家阿尔文托夫勒将大数据称作“第三次浪潮的华彩乐章”;
2005年,Hadoop项目诞生,从技术层面上搭建了一个使对结构化和复杂数据快速、可靠分析变为现实的平台;
2008年起,“大数据”成为互联网信息技术行业的高频词汇;
2011年,IBM的沃森超级计算机每秒可扫描并分析4TB的数据量;同年,麦肯锡第一次全方面地介绍和展望大数据;
2012年,美国软件公司Splunk成为第一家上市的大数据处理公司;
2014年,世界经济论坛以“大数据的回报与风险”为主题发布了《全球信息技术报告(第13版)》……
大数据从哪里来?大体可以简单概括成以下几类:第一,物质世界本身数字化产生的大数据。例如一些医疗服务类网站,将医生信息、门诊信息等现实事物数字化,形成了大量网络数据。第二,互联网交流不断产生的大数据。大量移动电子终端设备的出现,更加快了互联网信息制造的速度。第三,各种数据的积累、沉淀、及保存产生大数据。随着科技进步,时代变化,高性能存储设备日益发展普及,使越来越多的数据得以持续保存,形成越发庞大的数据集。
二、大数据究竟指什么?
大数据,顾名思义,海量数据或巨量数据。数据分析师.不同机构有不同的定义,基本上大同小异:Gartner公司认为“大数据是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产”;麦肯锡全球研究所认为,大数据是一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合。
大数据有四个特点:第一,数据体量巨大。可以称之为海量或天量;第二,数据类型繁多。涉及到人类生活方方面面所产生的数据源;第三,处理速度快。瞬间可从各类数据中快速获得高价值的信息;第四,数据动态变化。不断有新数据增加,数据分析师.采用合理的数据模型和分析处理方法,将会带来很高的经济和社会效益。
究竟大到多少才算是大数据?从数字上说,到2012年,互联网数据量已经从TB(1024GB=1TB)级别跃升到PB(1024TB=1PB)、EB(1024PB=1EB)乃至ZB(1024EB=1ZB)级别。据估计,到2020年,全球数据量将达到2015年的44倍,增长速度超过摩尔定律。
根据维基百科的定义,大数据的大小从TB到PB级别不等。然而,到目前为止,尚未有一个公认的标准来界定“大数据”的大小,其数据价值才是大数据的存在意义。换句话说,“大”只是大数据的一个表示容量的特征,并非全部含义。
三、大数据的意义与应用
刚刚过去的十一月,本人有幸当面请教数据库创始人、图灵奖得主Micheal Stonebraker,他认为,大数据这个词事实上是一些做营销的人发明的。提到意义、提到价值,首先就要将大数据联系到企业组织与管理方面,对大数据的合理解析可以帮助他们降本增效、做出更明智的市场决策,可以利用大数据进行精准营销与投资规划等等。
大数据分析相比于传统的数据挖掘分析,具有数据量大、查询分析复杂等特点,大数据与云计算密不可分。大数据需要结合新的处理模式才能产生具有更强的决策力、 流程优化能力等多样化的信息资产。大数据技术的战略意义不在于掌握庞大的数据信息,而在于掌握对这些含有意义的数据进行专业化处理的技术。
如果将“大数据”在经济发展中的意义当作其全部价值,那确实有些坐井观天,违背大数据的内涵本身了。大数据在当前为人们发掘利用,对社会、军事、生活等众多领域所产生的影响既具有广度又具有深度。例如:许多国家政府机构建立了用于身份管理的生物识别数据库;美国政府通过启动Data.gov网 站的方式进一步开放了政府数据的大门;欧洲一些领先的研究型图书馆和科技信息研究机构致力于改善在互联网上获取科学数据的方便性等等。不难看出,大数据作为一种重要的战略资产,已经不同程度地渗透到各个行业领域和部门,其深度应用不仅有助于企业经营活动,还有利于推动国民经济发展,可以说,大数据是一种反 映社会竞争力的软实力,是一种无形的资产,是一件隐形的武器,蕴含着很多占领先机的优势。
大数据的特色在于对海量数据进行分布式数据挖掘,它必须依托互联网的云服务进行分布式处理、分布式数据库和云存储等。如果把大数据比作一种产业,那么这种产业实现盈利的关键是提高对海量数据的“加工能力”。简单地说,大数据技术就是从各种各样类型的数据海洋中,快速获得有价值信息的能力。cda数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01