文 | 张小彦
在大数据时代,混乱的、无结构的、多媒体的海量数据,通过各种渠道源源不断地积累和记载着人类活动的各种痕迹。探索性数据分析可以成为了一个有效的工具。
美国约翰·怀尔德杜克(John Wilder Tukey)1977年在《探索性数据分析》(Exploratory Data Analysis)一书中第一次系统地论述了探索性数据分析。他的主要观点是:探索性数据分析(EDA)与验证性数据分析(Confirmatory Data Analysis )有所不同:前者注重于对数据进行概括性的描述,不受数据模型和科研假设的限制,而后者只注重对数据模型和研究假设的验证。他认为统计分析不应该只重视模型和假设的验证,而应该充分发挥探索性数据分析的长处,在描述中发现新的理论假设和数据模型。
探索性数据分析有别于初始性数据分析(initial data analysis - IDA)。初始性数据分析的聚焦点是分析鉴别统计模型和科研假设测试所需的条件是否达到,以保证验证性分析的可靠性。在这个分析过程中对不符合条件的数据进行缺值填补、数据转换、异常值舍弃等处理以增强分析的准确性。探索性数据分析包含初始性数据分析,但它的出发点不仅是确定数据质量,而且更重视从数据中发现数据分布的模式(Patten)和提出新的假设。
在以抽样统计为主导的传统统计学中,探索性数据分析对验证性数据分析有着支持和辅助的作用。但由于抽样和问卷都是事先设计好的,对数据的探索性分析是有限的。到了大数据时代,海量的无结构、半结构数据从多种渠道源源不断地积累,不受分析模型和研究假设的限制,如何从中找出规律并产生分析模型和研究假设成为新挑战。探索性数据分析在对数据进行概括性描述,发现变量之间的相关性以及引导出新的假设方面均大显身手。从逻辑推理上讲,探索性数据分析属于归纳法(Induction)有别于从理论出发的演绎法(Deduction)。因此,探索性数据分析成为大数据分析中不可缺少的一步并且走向前台。高速处理海量数据的新技术加上数据可视化工具的日益成熟更推动了探索性数据分析的快速普及。
美国2014年出版的《数据科学实战》(Rachel Schutt, Cathy O’Neil著,冯凌秉、王群峰译)一书中,探索性数据分析被列为数据科学工作流程中的一个能影响多个环节的关键步骤。(见下图)
可以通过建立垃圾电子邮件过滤器的过程考察一下探索性数据分析的作用。
由于电子邮件是自动积累的,各种商业广告常常充斥邮箱,每天都给用户带来很多不便。我们凭直觉和经验可以判断哪个是垃圾邮件,但人工清理这些垃圾很浪费时间。建立垃圾邮件过滤器的第一步是从大量邮件中随机抽样出100条(或更多),人工地将它们分成有用邮件和垃圾邮件。第二步是用探索性数据分析对筛选出的垃圾邮件进行分析统计出哪类词汇出现的机率最高。比如各类促销和诱惑语言等,根据该类语言出现的频度,可选出最常出现的5 到10个词。第四步,以选出的词为基础建立初始邮件过滤模型并开发邮件过滤软件程序,然后用它对一个大样本(1000或更大)进行垃圾邮件的过滤试验。第五步,对过滤器筛选出的垃圾邮件进行人工验证,用探索性数据分析计算过滤的总成功率和每个词的出现率。第六步,用成功率和出现率的结果进一步改进过滤模型,并在邮件处理过程中增加过滤器,根据事先定好的临界点(Threshold),增加或减少过滤词汇的功能(机器学习)。这样,该垃圾邮件过滤器将不断地自我改进以提高过滤的成功率。最后,应用数据可视化技术,各个阶段的探索性数据分析结果都可以实时地用动态图表展示。
从这个过程中我们可以看到:
(1)探索性数据分析能帮助我们从看似混乱无章的原始数据中筛选出可用的数据;
(2)探索性数据分析在数据清理中发挥重要作用;
(3)探索性数据分析是建立算法和过滤模型的第一步;
(4)探索性数据分析能通过数据碰撞发现新假设,通过机器学习不断的改进和提高算法的精准度;
(5)探索性数据分析的结果,通过数据可视化展示,可以为邮件过滤器的开发随时提供指导和修正信息。
按照传统统计的“垃圾进,垃圾出”(Garbage in, garbage out)的金科玉律,混乱和不规则的数据是无用的垃圾。在抽样统计中,每一个样品数据都必须经过严格的检测确保其准确性和可靠性。在大数据时代,混乱的、无结构的、多媒体的海量数据通过各种渠道(Internet of Things, IoT)源源不断地积累和记载着人类活动的各种痕迹。探索性数据分析这个统计课程里一带而过的分析方法在处理大数据的过程中却成为了一个有效的工具。正如美国探索性数据分析创始人约翰?怀尔德杜克所说:“面对那些我们坚信存在或不存在的事物时,‘探索性数据分析’代表了一种态度,一种方法手段的灵活性,更代表了人们寻求真相的强烈愿望。”
作者简介:
张小彦,社会学博士,现任一家软件公司董事长兼资深科学顾问
20世纪80年代由费孝通先生推荐赴美留学。1989年获匹兹堡大学社会学博士。二十多年来遵循费老“社会学为社会服务”的教诲,将社会科学与现代信息技术相结合开发社会管理和决策支持软件系统。曾为美国联邦政府和二十几个州政府设计、建立了毒品滥用预防活动管理信息系统。2007至2010年,被美国卫生部聘为毒品滥用预防和治疗研究中心国家级顾问;同年,获得国家预防网络授予的服务金奖;2008年获得了美国安永企业家东部地区年度奖;2010年被匹兹堡地区商业周刊评为行业标兵。现任一家软件公司董事长兼资深科学顾问。数据分析师培训
end
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03