
文 | 张小彦
在大数据时代,混乱的、无结构的、多媒体的海量数据,通过各种渠道源源不断地积累和记载着人类活动的各种痕迹。探索性数据分析可以成为了一个有效的工具。
美国约翰·怀尔德杜克(John Wilder Tukey)1977年在《探索性数据分析》(Exploratory Data Analysis)一书中第一次系统地论述了探索性数据分析。他的主要观点是:探索性数据分析(EDA)与验证性数据分析(Confirmatory Data Analysis )有所不同:前者注重于对数据进行概括性的描述,不受数据模型和科研假设的限制,而后者只注重对数据模型和研究假设的验证。他认为统计分析不应该只重视模型和假设的验证,而应该充分发挥探索性数据分析的长处,在描述中发现新的理论假设和数据模型。
探索性数据分析有别于初始性数据分析(initial data analysis - IDA)。初始性数据分析的聚焦点是分析鉴别统计模型和科研假设测试所需的条件是否达到,以保证验证性分析的可靠性。在这个分析过程中对不符合条件的数据进行缺值填补、数据转换、异常值舍弃等处理以增强分析的准确性。探索性数据分析包含初始性数据分析,但它的出发点不仅是确定数据质量,而且更重视从数据中发现数据分布的模式(Patten)和提出新的假设。
在以抽样统计为主导的传统统计学中,探索性数据分析对验证性数据分析有着支持和辅助的作用。但由于抽样和问卷都是事先设计好的,对数据的探索性分析是有限的。到了大数据时代,海量的无结构、半结构数据从多种渠道源源不断地积累,不受分析模型和研究假设的限制,如何从中找出规律并产生分析模型和研究假设成为新挑战。探索性数据分析在对数据进行概括性描述,发现变量之间的相关性以及引导出新的假设方面均大显身手。从逻辑推理上讲,探索性数据分析属于归纳法(Induction)有别于从理论出发的演绎法(Deduction)。因此,探索性数据分析成为大数据分析中不可缺少的一步并且走向前台。高速处理海量数据的新技术加上数据可视化工具的日益成熟更推动了探索性数据分析的快速普及。
美国2014年出版的《数据科学实战》(Rachel Schutt, Cathy O’Neil著,冯凌秉、王群峰译)一书中,探索性数据分析被列为数据科学工作流程中的一个能影响多个环节的关键步骤。(见下图)
可以通过建立垃圾电子邮件过滤器的过程考察一下探索性数据分析的作用。
由于电子邮件是自动积累的,各种商业广告常常充斥邮箱,每天都给用户带来很多不便。我们凭直觉和经验可以判断哪个是垃圾邮件,但人工清理这些垃圾很浪费时间。建立垃圾邮件过滤器的第一步是从大量邮件中随机抽样出100条(或更多),人工地将它们分成有用邮件和垃圾邮件。第二步是用探索性数据分析对筛选出的垃圾邮件进行分析统计出哪类词汇出现的机率最高。比如各类促销和诱惑语言等,根据该类语言出现的频度,可选出最常出现的5 到10个词。第四步,以选出的词为基础建立初始邮件过滤模型并开发邮件过滤软件程序,然后用它对一个大样本(1000或更大)进行垃圾邮件的过滤试验。第五步,对过滤器筛选出的垃圾邮件进行人工验证,用探索性数据分析计算过滤的总成功率和每个词的出现率。第六步,用成功率和出现率的结果进一步改进过滤模型,并在邮件处理过程中增加过滤器,根据事先定好的临界点(Threshold),增加或减少过滤词汇的功能(机器学习)。这样,该垃圾邮件过滤器将不断地自我改进以提高过滤的成功率。最后,应用数据可视化技术,各个阶段的探索性数据分析结果都可以实时地用动态图表展示。
从这个过程中我们可以看到:
(1)探索性数据分析能帮助我们从看似混乱无章的原始数据中筛选出可用的数据;
(2)探索性数据分析在数据清理中发挥重要作用;
(3)探索性数据分析是建立算法和过滤模型的第一步;
(4)探索性数据分析能通过数据碰撞发现新假设,通过机器学习不断的改进和提高算法的精准度;
(5)探索性数据分析的结果,通过数据可视化展示,可以为邮件过滤器的开发随时提供指导和修正信息。
按照传统统计的“垃圾进,垃圾出”(Garbage in, garbage out)的金科玉律,混乱和不规则的数据是无用的垃圾。在抽样统计中,每一个样品数据都必须经过严格的检测确保其准确性和可靠性。在大数据时代,混乱的、无结构的、多媒体的海量数据通过各种渠道(Internet of Things, IoT)源源不断地积累和记载着人类活动的各种痕迹。探索性数据分析这个统计课程里一带而过的分析方法在处理大数据的过程中却成为了一个有效的工具。正如美国探索性数据分析创始人约翰?怀尔德杜克所说:“面对那些我们坚信存在或不存在的事物时,‘探索性数据分析’代表了一种态度,一种方法手段的灵活性,更代表了人们寻求真相的强烈愿望。”
作者简介:
张小彦,社会学博士,现任一家软件公司董事长兼资深科学顾问
20世纪80年代由费孝通先生推荐赴美留学。1989年获匹兹堡大学社会学博士。二十多年来遵循费老“社会学为社会服务”的教诲,将社会科学与现代信息技术相结合开发社会管理和决策支持软件系统。曾为美国联邦政府和二十几个州政府设计、建立了毒品滥用预防活动管理信息系统。2007至2010年,被美国卫生部聘为毒品滥用预防和治疗研究中心国家级顾问;同年,获得国家预防网络授予的服务金奖;2008年获得了美国安永企业家东部地区年度奖;2010年被匹兹堡地区商业周刊评为行业标兵。现任一家软件公司董事长兼资深科学顾问。数据分析师培训
end
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15