京公网安备 11010802034615号
经营许可证编号:京B2-20210330
互联网时代的客户数据分析与精准营销
随着互联网金融和大数据时代的到来,银行在IT建设、数据采集方面都投入了大量的人力、物力和财力,CRM系统已普遍建立,基础建设初步完成。然而从整体来说,中国银行业由于在数据分析(analytics)领域经验的缺乏,战略上误将此项工作狭义化为IT工作,数据与客户仍然是隔离的,数据应用主要集中在后端,数据文化尚未形成,数据分析手段仍然比较原始,实际投入产出比不高。
单从客户细分而言,几乎所有银行都在做客户群分层工作,有的银行只是粗略分层,有的银行根据风险与客户生命周期进行客户分层,但几乎很少有银行能够从数据挖掘与分析角度精细化地进行客户细分与决策,而真正懂得如何科学运用数据与模型进行客户行为分析预判,特别对流失客户的分析与预判,实施精准营销的更是寥寥无几,这必然导致银行在以客户为中心的转型发展过程中,会遇到一系列与客户发展目标相关的瓶颈,诸如我们常常听到的如下头疼问题:
不知道哪些客群应该重视、哪些应该放弃;
客户流失率很高却不知其原因,不知道如何进行客户流失分析与预判;
不知道如何进行客户预见性营销与精准营销;
不知道如何通过数据分析与模型工具促发客户;
……
那么,如何解决以上问题呢?我们认为,银行首先必须要在客户数据分析这项重要工作里投入必要的资源、人力和物力,并愿意采用专业科学的管理方法与指导,从而使数据分析能够为银行带来实质性的效益。本文我们将通过两个案例的分享助您领悟这项工作的实施要领。
首先,将客户数据按照逻辑关系、层层深入划分、清理与分析。先运用数据分析方法将无效客户界定与排除,随后开展有效客户与潜在客户分析、有效客户精细化细分、潜在客户中分离出休眠客户分析等,通过层层分析与剥离,结合银行实际情况,得出对银行有终身价值的客户群。客户数据细分示例如下图:
其次,为了能真正理解客户,需要挖掘更多目标客户的内心深处的需求和行为特征。必须在超越客户身份、年龄类别、资产数字、交易数据等表象洞察客户的需求动因和价值观念,许多洞察客户对于产品的偏好、支付的偏好、渠道的偏好、交易时间的偏好等等。为此,要对分层后的客户进行深入的人文洞察与分析,分析结果用于辅助客户营销策略制定。
那么,什么才是无效客户呢?例如,某零售银行帐户多达350万,暂无精确的客户数,账户金额0-100元达250万(占总账户的71%,可能为无效客户),100-1000元达40多万户,拥有庞大的代发账户。在项目实施之前,该行并没有认识到,中低端账户金额并不等于中低端客户。银行也不知代发客户如何使用其账户资金,不知为什么代发客户资金流出银行。
界定无效客户,需要将数据分析方法与银行实际情况相结合考虑。
在本项目中,由于考虑到零售业务团队、IT团队与财务部门对无效客户定义不一致,首道资深顾问在数据清理之前,与银行相关团队共同协商与定义“什么样的客户在该行算无效客户”。根据第一轮协商,确定以行内资产(AUM)100元(包括100元)以下,并且过去12个月所有账户没有任何动作(如:存储提取和汇入)的客户为无效客户。后又采用统计分析方法与实战经验结合,得出银行各部门均可接受之分类切点。按此方法切除无效客户之后,便获得有效客户数据。
排除无效客户之后,重点对有效客户和潜在客户进行深入挖掘与分析。
在潜在客户中,一部分为有效客户,一部分为休眠客户。对休眠客户,采用相关策略进行营销,观测效果,根据效果为改进银行产品提供相关建议。对于有效客户细分,则可按客户的消费行为、按客户在银行资产额、按客户与银行关系长短、按银行收入贡献度等进行细分,尤其是对于在本行有低资产额的有效客户,需估测客户行外资产,协助进行交叉销售,对本行客户产品拥有情况做精细化分析,将零售客户总客户数,按照产品条线进行细分。通过数据分析,确定客户价值。
客户流失严重是某银行非常头痛的难题,如何对银行的客户做好维护是该行重点关心的话题。仍然回到之前的问题,该行拥有大量的代发客户,但不知为何代发客户资金流出银行金额较大?针对这个问题,我们的解决方案是:首先对该行代发流失客户进行相关数据细分与分析,确定流失客户特征和属性,同时分析影响客户流失的各因素及各因素之间的相互关系。在此基础上,对流失客户在流失过程中所处时间段,进行数据分析,确定流失客户时空特征,并对流失客户资产特征进行深入分析与判断,进而帮助银行对已经流失或者有流失预警的客户,提供相关流失客户挽留策略。
在项目中我们帮助该行建立了客户维护率模型,以此做好客户流失预判和保留,大幅降低了该行的客户维护成本。通过开发和不断调试,该模型能够帮助该行确定客户流失预期(如预计客户将在3个月或者5个月流失)与营销客户群(如年龄在20-30岁的女性客户群),并给该行提供与设计相关客户维护与吸引策略。例如:若要维护这些客户,避免在预计内流失到他行,则需要配备哪些产品进行营销?需要采取哪些营销活动?通过哪些渠道接触客户?在什么时间段最为适合进行客户挽留?决定哪些客户值得该行团队花费成本进行维护挽留?……为该行大幅降低了客户维护成本,提升了维护效率。客户维护率模型原理示意如下图所示。
除了做好客户流失预判和保留,为了提升该行客户精准营销之预见性,并将精准营销与该行产品(如信用卡)相挂钩,我们在项目中对该行营销数据进行收集与分析,并建立客户反应率模型。首先对该行现有全员营销数据进行收集,按照不同产品条线细分营销数据。与此同时,收集营销客户属性数据,将产品营销数据与客户属性数据相匹配,开发与调试反应率模型。反应率模型用以为营销目标客户群进行系统评分,并根据实际情况设定界定临界分值,剔除分值低于该临界分值的目标客户群,对符合分值之目标客户群提供相关营销策略与产品建议,由此致该行销售成本大幅下降,客户对产品反映率明显提高。客户反应率模型原理示意如下图所示。
总之,大数据时代,“一切从数据出发”应该演变为零售银行日常工作的思维和工作文化。银行需要努力将大数据推向前台,要以客户为中心,深刻洞察客户需求,从而打造个性化的客户体验。因此,应该采用传统数据分析,结合客户需求深入洞察,找出客户行为背后的规律。同时运用大数据技术,得出细分群体的行为特征,从而有目的、有计划地开展精准营销和服务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22