
除了数据分析师,你还要扮演这些角色
作为统计系的学生,读书时就常常参加各种数学建模竞赛,也参与过一些市场调研和咨询的项目。在这个过程中,让我印象最深的不是数据处理和分析,反而是与人沟通的过程。
研一时,我与同学组成的团队参与了一个旅游策划公司的项目。我们作为乙方为甲方提供数据咨询。我们自己做数据收集、设计调查问卷。这是一个很复杂的过程,既要保证访问者的认可性,由于成本原因群体也不能太大。根据统计数据,我们给出一个旅游者的行为画像,根据出行的时间、频率、花费、交通工具等变量,采用聚类分析的方法,对用户进行细分,看他们分别适合什么样的产品。
我们调查的范围是重庆主城区,采样涵盖到不同景点、不同年龄段的人群。在做调查之前,我们去跑各个景区,跟游客聊天,对旅客的情况有一个“摸底”。我们去跟游客接触,去问问题,沟通这个环节至关重要。
工作之后,我越发觉得,身为分析师要具备一定的“公关”技能。
毕业之后我去了一家第三方支付公司。消费者刷卡时的个人信息存在一定安全隐患,我负责做线下的伪卡防范工作,就是从历史的安全隐患数据中发现问题,总结特征,建立危险识别模型,最终当交易发生的时候,通过概率值判断是不是盗刷。
风险控制是公司业务的支撑部门。公司的互联网业务会带来很多用户,支付是其中必不可少的一个环节,也是互联网金融的基础。
然而这是一个新行业,这意味着你没有扩样本。从几率学角度来讲,凡是有监督的模型,比如输入1到20个变量,输出只是一个变量,它只告诉你是或否,但拒绝还是不拒绝要自己判断。所以我需要去训练,训练是来自于历史数据的积累,没有历史数据就带来很大的困难,只能尝试建立半监督模型,在没有数据的情况下养数据。
我们提倡数据多维度、多样性,但你的数据权限可能是有限的,资源是有限的。在这个过程中你就需要接入其它部门的数据。你如何说服对方为你提供数据,这需要一定的沟通技巧和巧妙的专业呈现,让跨部门的同事信任你。
这个工作不能着急,要持续不断地沟通交流,时不时把你正在做的事情给对方看,让他了解你工作的内容,看到你的努力。
举个例子,在进行风险控制时,不可避免地会把用户体验降低。比如你在网上购买理财产品,注册一个账户,对密码的复杂度要求不够严谨,用户可能会觉得注册过程很方便流畅,但会带来风险。反之,比如12306以前出现过信息泄露的问题,它现在的验证码就变成图片验证,但过于麻烦,用户体验就不好。
产品部门的同事会考虑风险控制会降低用户体验,让用户流失。但如果后期出现了安全问题,你做的东西帮助他规避了风险,他就会理解你的工作,愿意用你的东西,所以你做的东西一定要有价值。对于这个问题,我们有时也会进行灰度测试,比较A版本和B版本在转化率上有什么差异,不断调整,在风险控制和用户体验之间找到一个平衡点。
销售
根据支持的工作,帮助他们的区域市场分析哪个项目是可以做的,该往哪个方向发展。我可以参与他们的销售会议,协助制定销售目标。在这个过程当中,我可以学到销售部门的人员是怎么考虑问题的。
后来又去了平安保险实习。当时去了平安产险管理部,我主要负责车商渠道的数据管理。比如,我想把一个保险卖出去,我们与车辆售后网点以资源换资源的方式合作。例如客户的车出现问题之后,他首先联系保险公司,保险公司再给客户推送网点。在推送的过程中,A店、B店怎么分配资源、具体的成本多少,需要建立一个模型,把推送方案最优化。建立模型时,你就需要有销售人员的思维。
杂家
想做数据分析师的同学学科背景不同,学计算机的编程很厉害,数学的更擅长纯理的东西。以我的经验来说,企业里许多岗位偏好学统计的。
如果做数据挖掘,偏理论性,可能喜欢用数学专业的学生;在企业里,经营管理、经营分析、风险管理等相关岗位更喜欢用学统计的;大数据中心涉及到数据产品的开发,更偏向于学计算机和数学的,但这都要求有一定的统计学思维。比如我看到一个数字的时候,我要联想它背后代表什么意义,看到A问题的时候不孤立地去看,善于与总体情况联系对比,既要看到总体也要看到差异。即便不是学统计出身,也要在平时的学习工作中训练自己。
互联网金融行业对人才的需求很大。我们招聘人才,一是要看你对金融产品的理解,二要看是否具有数据思维,具有一定的数据分析技能。还有一点很重要,要有热情,这个工作要重复很多事情,但不是机械的重复,也要进行思考,这都需要热情的支撑。
我建议同学们除了要打好基本功、熟练掌握1至2门编程语言之外,还要多接触数据,培养对数据的感觉;同时多研究不同的商业模式,研究不同的公司是怎么赢利的,天文地理历史人文,知识面要广博多样,让自己变成一个杂家,这可能会让你的数据分析工作更有想象力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18