京公网安备 11010802034615号
经营许可证编号:京B2-20210330
浅谈BI实时图表实现数据可视化的原理
不久前,在商业智能实时图表解决方案的选择中,我们简单讲了下实时分析的工作流程。今天我们就来详细讨论一下这个话题。
如果你已经使用过实时dashboard,或者正打算建立一个,那么,这篇文章可以帮助你理解实时dashboard背后的故事以及实时数据如何展现在你的dashboard中,从而实现数据可视化。
除去端到端之间极短的时间,数据实时可视化主要有四大步骤。这里我们用一张图来展示。
1、捕获数据流
实时数据流使用 scrapers、collectors、agents、listeners捕获,并且存储在数据库中。数据库通常是NoSQL数据库,例如, Cassandra、MongoDB, 或者有时候是你只是Hadoop Hive。关系数据库不适合这种高展现的分析。NoSQL数据库的崛起也增强了实时数据分析向他靠拢的趋势。
2、数据流处理
数据流可以通过许多方式处理,比如,分裂、合并、计算以及与外部数据源结合。这些工作由一个容错分布式数据库系统,比如, Storm、Hadoop,这些都是比较常用的大数据处理框架。但是他们却不是实时数据分析的理想选择。因为他们依赖MapReduce面向批量的处理。不过Hadoop 2.0允许使用其他计算算法代替MapReduce,这样使得Hadoop在实时分析系统中运用又进了一步。处理之后,数据就可以很可视化组件读取了。
3、数据可视化组件读取处理过的数据
处理过的数据以结构化的格式(比如JSON或者XML)存储在NoSQL数据库中,被可视化组件读取。在大多数情况下,这会是一个嵌入到一个内部BI系统的图表库,或者成为像Tableau这种更加广泛的可视化平台的一部分。处理过的数据在JSON/XML文件中的刷新频率,称为更新时间间隔。
4、可视化组件更新实时DASHBOARD
可视化组件从结构数据文件(JSON/XML),在图表界面绘制一个图表、仪表或者其他可视化行为。处理过的数据在客户端展现的频率叫做刷新间隔时间。在一些应用程序中,比如带有图表渲染功能的股票交易应用程序,会预先设置基于数据流的触发功能。
会不会觉得很复杂呢?只不过这些过程会在几秒钟内,甚至更短时间内完成。这些操作因为不断进步的数据库及实时功能变成现实,特别是NoSQL数据库。再由诸如Storm这种专用于实时进程处理的工具辅助,可以让其性能效果更上一层能。现在的可视化数据已经支持需求场景,在当今的大数据应用程序中建立了一个实时分析生态圈。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26