京公网安备 11010802034615号
经营许可证编号:京B2-20210330
四步提升数据分析能力成熟度_数据分析师
配备合适的人才和技术,您可以做到未雨绸缪,快速响应
现实中存在着数量惊人的公司,在需要作出影响其公司底线的关键决策的时刻,缺乏及时有效的信息。想象一下这样的一个画面:某汽车生产厂家由于安全故障问题而面临大量召回的风险;或者社交媒体上充斥着对某旅行社的负面评价;--如果在这些事件发生之前或者在危险还没升级之前,相应的危机可以得到解决的话,相信无论是汽车生产厂家还是旅行社,都会大受裨益。
幸运的是,我们知道一个公司/组织能否对未来作出快速的响应,与其内部预测分析能力的成熟度直接相关。而这一切又取决于合理的人才配备、分析流程以及分析技术的部署和应用,全副的武装可助您解燃眉之急,并赋予您处理实际业务中碰到的疑难困惑的能力,还能够对潜在的风险作出预警,当然所有这些都建立在对现有数据进行分析的基础上。
接下来的四步曲可以帮助您提升组织内部敏捷的分析能力,即在事情还未发生之前及时作出预警,从而减少未来的不确定性。
第一步: 把分析置于首要地位
提升组织内部分析能力最关键的一步就是要让所有的员工都意识到基于信息决策的重要性。关于数据分析重要性的宣介活动可以通过多种形式:包括视频教学、在线研讨会以及关于数据分析实践的社群共享,或者直接给大家展示可视化分析的结果等。总之,不管通过何种方式,要让大家清楚的认识到高级的数据分析技术可以带来重要的价值应用。
同时,你也可以盘点并梳理一下组织内部现有的分析资源:比如挑选不同部门内部对数据敏感、有一定分析能力的员工;记录组织内部有哪些关键的数据分析技术应用,列出关键的业务应用领域。我们还建议推举出分析领域的专门负责人,由这个人负责主要数据分析战略的落实,保证组织在接下来各个阶段的分析能力建设的成功部署。
第二步: 进行分析试点
该阶段通过梳理和使用现有的分析资源,明确公司的数据分析能力。通过将组织的现状和将来的战略目标进行对比,确定存在哪些新的机会,分析可以在其中起到关键作用。再进一步,分析团队需要考虑如何使得分析预测的结果更加精确和及时,以及这些分析结果如何在业务中得到更好的应用。
数据分析的整个流程是该阶段的关键,一定要特别注意。我们既要进行深入的数据探索和建模,还要考虑模型的修正、部署以及监督应用;通过详细回顾分析的整个流程,您将有可能发现哪里存在不足,以及哪些地方需要改进,进而形成数据分析相关的规章制度和相关流程。
第三步: 组建分析团队
组建内部自发的分析团队,并鼓励形成凝聚力强的分析社区。内部的分析专家可以相互进行探讨,对组织内部数据分析建设提出建议,并通过有效的维系促进分析能力的建设和发展。
小组会议,研讨会以及用户交流会或者博客等形式都有助于提升数据分析的应用和升级,在分析能力建设的后期,交流对于公司整体数据分析能力的提升发挥着极其重要的杠杆作用。
第四步: 通过分析预测调整战略部署
到了该阶段就意味着所有数据分析相关的基础架构和配备都已经部署完毕,组织根据业务变化的需要可以借助强大的分析能力作出快速响应。比如针对业务需要的新的模型可以很快的建立和部署应用,而且比以往的预测结果更加精确,从而可以提供更加精准的信息。
在该阶段,分析的目的应该从简单的回答战术性问题转移到更具前瞻性的战略问题上来,该阶段的分析包括对一些有可能发生的情景进行测试,通过模拟、优化以及其他前沿的统计学方法排除一些发生概率低的可能性结果。该工作可以通过一个集中的分析平台来进行。除此之外,不同形式的海量数据的应用,包括文本数据和社交数据,也可以帮助预见未来,并激发创新性的想法以吸引消费者,同时赢得市场先机。
结论
要完成以上四步的实施并非易事,也不能一蹴而就。分析能力的培养需要领导层的决心和信心以及其持续性的支持和努力,另外对人才储备和分析工具进行的投资同样也是成功的关键。
提升组织的分析能力成熟度需要多方面的工作,包括合理的人才配备、分析流程以及分析技术的部署和应用更关键的是数据资产的质量和完备性。但是高效灵活的数据分析带来的回报是不可估量的-有可能是决定性的成败!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15