
浅谈数据处理中的相关分析
大数据的发展经历了从因果分析到相关分析的转变。宏观上来讲,如果两个事务存在某种统计学意义上的依赖性就称两者具有相关性。这里我们就简单聊聊各种相关分析的方法。
我们经常会用到的比如计算两个商品的相似度,或计算两个用户之间的相似度,如下图所示,是基于商品的购买行为,来计算两个商品之间的相似程度。我们先基于此例来说明。这里每个商品可以表示成用户购买行为的特征向量,其中1表示此用户购买,0表示此用户未购买。
设商品a的特征向量为向量A, 商品b的特征向量为向量B,那么常用的计算相关性的方法有以下:
Jaccard相关是基于计算集合之间的相似度方法,而Cosine和Pearson都属于积差相关的范畴。通过简单对比,我们看得出A和B的Pearson相关系数就是向量A和B归一化后再计算Cosine相关系数的结果。
如果在某些情况下,我们不需要顾及计算向量中值的相对大小,那么还可以计算等级相关性系数,如Spearman等级相关和Kendall等级相关等。等级相关没有积差相关要求那样严格,相同的情况下,等级相关的精确度要低于积差相关。
如果我们想除去共同噪声的影响,可以选择偏相关分析的方法(在频域上叫偏相干)。其结果与先回归掉噪声再计算相关的结果是一样的。
如果我们的处理对象是时间序列,除了以上谈到的方法外,我们还可以度量频域上的相关性,如使用相干谱分析的方法,如小波相干等。即您可以得到不同时间点不同频率上的线性相关性系数,同时还可以平衡时间和空间上的分辨率。
如果有时间建议大家不妨多做些实验,而且要定期做,因为数据集的变化(稀疏度、噪声等因素)可能导致相似度指标效果的变化。比如对于一个电商平台的商品推荐系统,初期时可能使用方法x效果最好,当用户数逐渐增加,商品越来越丰富,可能方法y效果最好,直到系统越来越复杂,可能这时方法z是最好的了。所以建议定期做些离线试验来选择此时效果最好的方法。
我们常用的如Jaccard相关, Cosine相关,Pearson 相关都是属于线性相关的范畴,复杂的还有非线性相关的方法,如多谱分析,互信息等。但这些在我们电商的场景中很少用到。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01