京公网安备 11010802034615号
经营许可证编号:京B2-20210330
技术带动市场,电商大数据发展的那些事儿
对于技术人们总觉得是研发层面,和市场层面很难挂钩,不过随着云计算和大数据应用的逐步普及,尤其是移动互联网的快速发展,对于大数据的应用观念也开始发生了改变,尤其是一些精准营销和推荐方面的应用都开始在大数据应用中被完美地演绎。这时候,技术和市场的衔接就变得更加紧密了。于是我们看到一些以技术见长的公司开始进行更高效和精准的市场化运作,而以运营见长的公司也开始不断挖掘自身的数据价值,进而开始不断地延伸到产品序列中,通过二者的有机整合,开始挖掘内部的价值。
贸工技和技工贸其实都延伸了
众所周知,曾几何时,我们对贸工技和技工贸还有一些争议。不过进入到如今的时代,这二者开始有机地整合在一起了。因为无论是贸易还是技术,都已经不能唯一地存在,而需要更多的协调发展,或者说是相辅相成的发展才可以挖掘到价值最大化。
其中云计算和大数据应用就是最好的体现。于是我们的认知也开始发生改变,以京东为例,对于京东大部分人只知道它是一个电商平台,实际上京东特有的服务模式,已经成为中国自营式电商的领头羊,如今更加多元化,对于电商来说,很多人往往忽略了技术对电商业务带来的推动作用,就京东来说,业务与技术的双向驱动是其发展的策略。
从今年的双11来看,京东技术对外公布了三大战役:换底计划(迁移至云)、多中心交易计划、京东大脑计划。前两个还属于技术架构的转变,而后一个则是将数据变成价值的体现。顾名思义,大脑是最复杂的信息处理中心,因为有太多的信息,太多的逻辑,太多的思维模式在其中了。京东大脑研究的不仅仅是人工智能范畴的内容,还包含与自身运营息息相关的数据范畴。简单地说,京东大脑就是希望通过对用户网购习惯等信息进行大数据挖掘与分析,然后反哺到自身的运营中。当然,这种运营包括营销、供应链、运营、推广、物流、仓储等等。
京东大脑有啥用?
对于用户来说,才不管你什么大脑,只要我自己购物方便、实惠,靠谱就可以了。但实际上在这背后都有京东大脑的协助来提升用户体验。不过对于供应链和供应商来说,京东大脑能带来的好处就优势明显了。这里就有必要看看京东大脑究竟能带来哪些数据分析,并由此带来一些延伸判断。
对于京东而言,可以说是拥有了中国电商领域最完整、最精准、价值链最长的数据。京东大脑就是希望利用大数据技术帮助京东提升用户体验,降低运营成本,提高效率。那么是不是可以实现呢?我们看到京东大脑的计划目标是,结合智能计算技术,提高京东的实时计算和数据挖掘能力,改进京东数据质量,充分利用京东大数据价值。改进推荐搜索准确性,提高实时数据报表和预测能力。
相似的应用其实在很多领域我们已经看到,只是大家的技术应用和体验有差异罢了,从技术上来看,这种预测和精准定位应该不是技术难题。据悉,京东大脑架构分为3层:基础数据层、知识层、服务层。基础数据层存储京东海量的生产数据,包括主数据(商品数据、用户数据、商家数据、地址数据、供应商数据、库存数据等)、交易数据(订单数据等)、点击流数据等。这是根基,也是大平台积累的原始数据,是一笔可观而宝贵的财富。我们现在很多应用包括移动端的应用,刨除免费,促销等等,都是希望能够获得足够多的用户数据。而京东本身的发展带来的数据原始积累已经达到了自身的需求,对这些数据的挖掘本身就是一个浩大的宝藏。
知识层是在基础数据上,通过有效数据建模和挖掘,加工成知识数据,如用户画像、商品画像、店铺画像、供应商画像、小区画像、知识图谱等,帮助上层更好地决策,包括预测、推荐搜索和报表等。这是技术层面的内涵,也算是京东自有的一种技术积累吧。而服务层是最终的成果呈现,这也是对用户和合作伙伴最重要的一环。服务层是最终提供预测、推荐搜索、报表等服务。推荐搜索主要是为C端用户(买家)业务提供服务,如网页上商品查找、个性化推荐等;预测主要为B端用户(卖家)业务提供服务,如销量预测、精准营销等。
应用挖掘才是最重要的
京东大脑最终的呈现就是为服务而生的,这也就要看最终的呈现是不是能够满足各方的需求,无论是买家、卖家、采销、供应商等都需要满足才可以。我们做一个小小的切片来看看京东大脑的服务呈现是不是靠谱。以小区画像为例,由于相近的因素,一般一个小区会天然聚集一些购买能力和习惯相近的人群,这样就可以按小区计算用户的购买属性(如购买力、品牌偏好等),对销量预测、推荐搜索、精准营销、拓展新用户等都有帮助。
这样在做精准营销时,通过定量分析小区人群的消费能力、商品偏好、品牌偏好、用户数量、促销敏感度、信用水平、忠诚度、活跃时段等,可以从一些用户的购买行为,预测其他用户可能购买的商品。小区画像可用于“地推”类项目,如京东到家、自提柜、移动仓、大篷车、京东派等,利用京东渠道、仓储、物流方面的优势,线下做好“最后一公里”。
对于用户而言,京东大脑也能带来很多的便捷性,比如用户在京东购买过某种婴儿奶粉,在京东大脑中就会通过类似的用户购买模型匹配给他打上“有孩子”的标签,并根据同类用户、同小区用户的购买模型,把适合其孩子年龄段和购买偏好的相关产品推荐给他。这样个性化推荐和个性化搜索结果呈现让用户也可以省去很多麻烦,几乎就可以实现一站式,或者是一次点击就可以一路追随下去,尤其对于手机用户而言,这样的精准推荐自然让用户省去了很多麻烦。
很显然京东大脑是把自己的数据应用和电商发展,包括衍生平台的发展都衔接在一起,这样可以更好地为用户和客户服务,通过科技的手段,整合更多的信息和资源,帮助用户和客户获得更多的需求和发展机会。这种应用无疑是技术驱动带来的一种新机会,随着移动互联网的快速发展,未来这种精准应用会带来更多的商机,这一点是毋庸置疑的,而数据优势就是最大的优势。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22