京公网安备 11010802034615号
经营许可证编号:京B2-20210330
《ibm spss modeler数据与文本挖掘实战》_数据分析师书籍推荐
《ibm spss modeler数据与文本挖掘实战》
图书简介:
本书主要包括两部分内容:在数据挖掘部分,重点介绍了各种数据挖掘方法的基本原理及应用,包括回归分析、时间序列分析、因子分析、决策树分析、判别分析、聚类分析、人工神经网络、贝叶斯网络以及社交网络分析等;在文本挖掘部分,重点介绍了文本挖掘的节点,以及具体的实现过程。每一章都详细介绍了数据和文本挖掘的基本原理和分析过程,同时在实例中也介绍了SPSS Modeler中大部分节点的使用方法及应用步骤。
本书与同类书籍相比,安排了较多的实例,使读者能够边学边练,在短时间内就可以有一个较大的提高,方便读者熟悉SPSS Modeler的基本操作,并通过系统的案例使读者掌握应用技巧。
本书对于高校理工学科、经济金融学科及数量分析方面的学生,以及数据挖掘和分析方面的研究人员和从业人员等,具有很强的可读性、可操作性与可使用性,尤其适合商业销售、经济管理、社会研究和人文教育等行业的相关人员阅读。
目录
第1部分数据挖掘篇
第1章数据挖掘概述 3
1.1什么是数据挖掘 3
1.1.1数据挖掘的定义 4
1.1.2数据挖掘的发展阶段 5
1.2与传统技术的比较 8
1.2.3数据挖掘和OLAP 9
1.2.4数据挖掘和Web挖掘 10
1.3常用的数据挖掘软件 11
1.3.1SAS EM 12
1.3.2SPSS Modeler 13
1.3.3Intelligent Miner 13
1.4应用实例:目标客户分析 15
1.4.1研究方法 15
1.4.2数据分析 15
1.4.3研究结论 26
第2章SPSS Modeler软件概述 27
2.1软件简介 27
2.1.1软件发展 28
2.1.2软件界面 30
2.1.3软件特点 35
2.1.4软件功能 37
2.1.5软件算法 39
2.1.6高级功能 41
2.1.7软件安装 42
2.2行业应用 50
2.2.1通信行业 50
2.2.2ZF行业 52
2.2.3金融行业 53
2.2.4制造行业 54
2.2.5医药行业 56
2.2.6教育科研 56
2.2.7市场调研 57
2.2.8连锁零售 57
2.3数据挖掘流程 58
2.3.1业务理解 58
2.3.2数据理解 59
2.3.3数据准备 60
2.3.4建立模型 61
2.3.5评估模型 61
2.3.6应用模型 62
2.4应用实例:药物效果研究 62
2.4.1研究方法 63
2.4.2数据分析 63
2.4.3研究结论 69
第3章SPSS Modeler基础操作 70
3.1数据输入 70
3.1.1数据库 71
3.1.2可变文件 73
3.1.3固定文件 75
3.1.4SAS文件 76
3.1.5Statistics文件 77
3.1.6Excel文件 77
3.2数据流操作 78
3.2.1生成数据流 78
3.2.2添加和删除节点 79
3.2.3连接数据流 79
3.2.4修改连接节点 80
3.2.5执行数据流 81
3.3图形制作 82
3.3.1散点图 82
3.3.2直方图 84
3.3.3网络图 85
3.3.4评估图 87
3.4应用实例:产品销售预测 88
3.4.1研究方法 88
3.4.2数据分析 88
3.4.3研究结论 99
第4章回归分析 100
4.1回归分析模型概述 100
4.1.1模型定义 101
4.1.2模型应用 102
4.1.3建模步骤 103
4.1.4注意事项 103
4.2应用实例:客户流失因素分析 104
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22