京公网安备 11010802034615号
经营许可证编号:京B2-20210330
1. SAS INSIGHT启动:
方法1:Solution→Analysis→Interactive Date Analysis
方法2:在命令栏内输入insight
方法3:程序编辑窗口输入以下代码,然后单击 Submit按钮;
Proc insight;
Run;
用 sas insight做直方图、盒形图、马赛克图。
直方图:Analysis→Histogram/Bar Chart
盒形图:Analysis→Box plot
马赛克图:Analysis→Box plot/Mosaic plot(Y)
散点图:Analysis→Scattery plot(Y X)
曲线图:Analysis→Line plot( Y X)
旋转图:Analysis→Rotationg Plot
曲面图:Analysis→Rotationg Plot 设置 Fit Surface
等高线图:Analysis→Countor plot
包括:直方图、盒形图、各阶矩、分位数表,直方图拟合密度曲线,对特定分布进行检验。
第一部分为盒形图,第二部分为直方图,第三部分为各阶矩,第四部分为分位数表。
A:参数估计:给出各种已知分布(正态,指数等),只需要对其中参数进行估计;
Curves→Parametric Density
B:核估计:对密度函数没有做假设,曲线性状完全依赖于数据;
Curves→Kernel Density
Curves→CDF confidence band
Curves→Test for Distribution
Analysis→Fit(Y X):分析两个变量之间的关系
Analysis→Fit(Y X)
Analysis→Fit(Y X)
Analysis→Multivariate
Analysis→Multivariate
方法1:Solution→Analysis→Analyst
方法2:在命令栏内输入analyst
Statistics →Descriptive→Summart Statistics 只计算简单统计量
Statistics →Descriptive→Distribution 可计算一个变量的分布信息
Statistics →Descriptive→Correlations可计算变量之间的相关关系
Statistics →Descriptive→Frequency counts 可计算频数
Statistics →Table Analysis
Statistics →Hypothesis tests →One-Sample Z-test for a mean
推断该样本来自的总体均数μ与已知的某一总体均属μ0是否相等
Statistics →Hypothesis tests → One-Sample t-test for a mean
Statistics →Hypothesis tests →One-Sample test for a proportion
Statistics →Hypothesis tests→One-Sample test for a variance
Statistics →Hypothesis tests →Two-Sample t-test for means
Statistics →Hypothesis tests →Two-Sample paired t-test for means
Statistics →Hypothesis tests →Two-Sample test for proportions
Statistics →Hypothesis tests→Two Sample test for variance
Statistics →ANOVA→One-Way Anova
Statistics →ANOVA→nonparameter one-way Anova test
Wilcoxon法、Median法、Van der Waerden法、Savage法。
Statistics →ANOVA→Factorial Anova
Statistics →ANOVA→Linear Model
Statistics →Regression→simple
Statistics →Regression→linear
Statistics →Regression→logistic
|
Proc print data = sasuser.score; //数据库.数据集 Run; |
|
Proc print data = sasuser.score; Var name math Chinese; //变量 Run; |
|
Proc print data = sasuser.score noobs; //去掉第一列(观测序号) Var name math Chinese; Run; |
|
Proc print data= sasuser.score; Where sex in(‘f’); //通过where语句 Run; |
|
Proc print data = sasuser.score noobs label; Title ‘女生成绩单’; Label name =‘姓名’ Sex =‘性别’ Math = ‘数学’ Chinese = ‘语文’ English = ‘英语’; Where sex in(‘f’); Run; |
|
Title “the sas system”; //恢复系统标题 |
|
Proc print data = sasuser.score; Footnote = ‘分数列表’; //加分数列表的脚注 Run; |
|
Proc sort data = sasuser.score; By sex; Run; Proc print data = sasuser.score; //使用by分组输出前用sort排序 By sex; Run; Proc print data = sasuser.score; Sum math; Run; |
|
Proc tabulate data =数据集名称; Class 分类变量; Var 分析变量; Table 页面说明 行维说明 列维说明/选项; Run; |
|
Proc sort data = 数据集名称; //默认升序排列 By 变量名; Run; |
|
Proc sort data = 数据集名称; By descending 变量名; //降序排列 Run; |
|
Proc means data = sasuser.stock; Var price; Run; |
|
Proc univariate data =数据集; Var 分析变量; Run; 结果: Moments:统计量的各阶矩,例如一阶矩就是均值,二阶矩就是方差等; Basic Statistical Measures:基本统计量; Tests for location:检验均值是否为零; Quantiles:分位数表; Extreme Observations:极端观测值。 |
|
Proc freq data =数据集名; Tables 变量名; Run; 结果: 变量取值、频数、百分比、累计频数、;累计百分比 |
|
Proc corr data =数据集; Var 变量名 变量名; Run; 结果: 简单统计量 相关系数及p值 |
|
Proc gplot data = 数据集名称; Symbol 曲线类型; Plot 竖轴变量*横轴变量; Run;
Proc gplot data = sasuser.score; Symbol I = none v=star; Plot English*Chinese; Run;
|
|
Proc gchart data = 数据集名称; Vbar/pie/block =变量; Run; |
|
Proc g3d data =数据集; Plot 变量x*变量y=变量z; Run; |
|
Proc gcontour data =数据集名; Plot x*y=z; Run; |
|
Proc univariate data= sasuser.stock normal; Var eps; Run; |
|
Proc univariate data= sasuser.stock normal; Var eps; Histogram eps; //画出直方图 Probplot eps; //画出概率分布图 Run; |
4.2.1如果一个变量服从正态分布,那么可以用t检验来对变量进行均值检验
|
Proc ttest data =数据集 ho = 均值; Var 检验变量; Run; |
4.2.2t检验还可以检验方差相同的两个独立样本均值是否相等
|
Proc ttest data =数据集; Class 分类变量; Var 检验变量; Run; 结果 第一部分简单统计量 第二部分t检验结果 第三部分两者方差是否相等检验 |
T检验要求两个独立样本都必须服从正态分布,如果不服从正态分布,则无法进行t检验。这时可用非参数的方法,常用的非参数方法是NPAR1WAY过程,它是 noparameter 1 way缩写。
4.4.1 REG过程
|
Proc reg data = 输入数据集 选项; Var 变量列表; Model 因变量 = 自变量列表; Print 输出结果; Plot 诊断图形; Run; |
指明模型的表达式并给定系数初值
4.5.1单因素方差分析
|
Proc anova data =数据集名称; Class 因素; Model 实验结果 =因素; Run; |
|
Proc anova data =数据集名称; Class 因素; Model 实验结果 =因素; Means brand; Run; |
|
Proc anova data =数据集名称; Class 因素; Model 实验结果 =因素; Means brand/t; //t检验 Run; |
|
Proc anova data =数据集名称; Class 因素; Model 实验结果 =因素; Means brand/bon; //bonferroni t检验 控制第一类错误的概率,但是具有较大第二类错误概率 Run; |
|
Proc anova data =数据集名称; Class 因素; Model 实验结果 =因素; Means brand/regwq; //regwq检验 控制第一类错误的概率 Run; |
|
Proc anova data =数据集名称; Class 因素; Model 实验结果 =因素; Means brand/tukey; //tukey检验 控制第一类错误的概率,但是第二类错误概率通常高于regwq检验 Run; |
4.5.2多因素方差分析
4.5.3列联表检验
|
Proc freq data = 数据集; Tables 因素a*因素b / chisq; Weight 实验结果; Run; |
因变量—Depender (Y)
自变量—Independent (X1 X2…)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15