
2.4 医疗健康大数据特点
医疗大数据除了包含了大数据5 个V 的特点之外,还有多态性、时效性、不完整性、冗余性、隐私性等特点[10]。多态性指医师对病人的描述具有主观性而难以达到标准化;时效性指数据仅在一段时间内有用;不完整性指医疗分析对病人的状态描述有偏差和缺失;冗余性指医疗数据存在大量重复或无关的信息;隐私性指用户的医疗健康数据具有高度的隐私性,泄漏信息会造成严重后果。
3 医疗健康大数据应用举例
信息化的医疗数据、医疗研究数据、病人特征数据以及移动设备、社交网络和传感器产生的医疗健康相关的数据为医疗健康从业人员提供了新的思路,利用大数据技术可以从中发现潜在的关系、模式,从而帮助医师提高诊断精度、预测治疗效果、降低医疗成本,帮助医药公司发现潜在的药物不良反应、帮助公共卫生部门及时发现潜在的流行病。下面将从公共卫生、药物副作用评估、治疗预测与降低医疗成本、辅助诊断与个性化治疗等几个方面介绍大数据的用处。
3.1 助力公共卫生检测
2009年,Google比美国疾病控制与预防中心提前1~ 2周预测到了甲型H1N1流感爆发,此事件震惊了医学界和计算机领域的科学家,Google的研究报告发表在Nature杂志上[11]。Google正是借助大数据技术从用户的相关搜索中预测到流感爆发。随后百度公司也上线了“百度疾病预测”借助用户搜索预测疾病爆发。借助大数据预测流感爆发分为主动收集和被动收集,被动收集利用用户周期提交的数据分析流感的当前状况和趋势,而主动收集则是利用用户在微博的推文、搜索引擎的记录进行分析预测。
FluNear You[12]借助用户周期提交的自我流感检测来预测流感的爆发。首先,用户在Flu Near You的网站上注册,随后每个星期用户将收到一封电子邮件,指引用户登录Flu Near You网站。在网站上,用户填写一份关于自己是否有流感症状的调查。最终Flu Near You收集信息并利用大数据技术生成目前流感疾病和未来流感疾病预测的可视化图表。
流感爆发初期,通常伴随着用户在搜索引擎搜索相关内容或在社交网络上发布相关内容,这些信息可以作为流行病爆发的初期预警[13,14]。参考文献[15]以用户在Twitter上的推文以及英国健康保健局发布的城市流感样病例率(influenza like illnessrate)为数据源,通过LASSO算法进行特征选择,选择推文关键字,建立未来数天流感样病例率的预测模型,取得了比较精确的结果。在疾病传播中,长时间与病原体接触会增加感染的几率,因此追踪人口接触信息以及人口位置信息将有助于了解流行病的行为[16,17]。参考文献[18]设计了一套使用智能手机自动收集人口位置信息与接触信息的应用。参考文献[19]将流行病数据源分为媒体(包括官方媒体)、移动设备、社交网络、Pro-Med邮件列表、实验室和医院数据,并根据不同数据来源设计了一套收集数据、分析数据、验证数据、数据可视化的系统,用以直观表现流行病的情况。
3.2 帮助发现药物副作用
药品上市后的不良反应检测一般依赖被动检测和主动检测。被动检测依赖于医生、患者、制药公司提供的不良反应报告。被动检测最大的问题是漏报,参考文献[20]认为94%的不良反应没有被报告。主动检测则是利用文本挖掘、数据挖掘技术从EHR、EMR、社交网络、搜索引擎中发现潜在药品导致不良反应事件[20]。参考文献[21]利用药品不良反应存在时间先后顺序,挖掘电子病例中可能存在的药物不良反应。参考文献[22]将引起不良反应的条件分为使用一种药品、两种药品、一种药品和病人的一种特点、一种药品和一种药品过敏事件,根据决策树、聚类等数据挖掘方法发现条件和不良反应结果的关系。当药物使用与不良反应存在低频率的因果关系时,一般的数据挖掘算法将难以分辨因果关系和偶然事件[23],参考文献[23]基于预认知决策模型(RPD model)设计了多种算法用以发现药品不良反应中的低频因果关系[23~25]。
3.3 助力治疗预测与降低医疗成本
目前,医疗健康行业成本高昂的部分原因来自医疗失误和医疗浪费。根据1998年美国医疗协会的报告,仅仅在美国,可以避免的医疗失误每年造成了98 000起死亡案例[26]。美国花在医疗健康上的费用超过1 700亿美元,而中国每年花费在医疗健康上的费用超过30 000亿元。在此背景下,多国通过改革医疗系统以减少医疗失误及医疗浪费,最终削减医疗开支。美国于2011年通过的关于医疗健康信息技术的HITECH法案宣布:决定投入500亿美元在5年内使用信息技术解决医疗行业存在的问题[27]。而中国在2009年宣布了花费1 200亿元的10年医疗系统改革计划的第一部分。
参考文献[28]中分析了澳大利亚的医疗保险行业,认为使用目前的验证技术无法有效发现医疗服务中存在的欺诈、滥用、浪费、错误等现象,原因在于旧的验证技术只关注单个病例,无法利用多个病例间的联系。作者以医疗账单为数据源,建立关于治疗费用、住院时间等数据的预测模型,使用数据挖掘技术发现账单中的异常数据;使用领域专家建立的规则库分析异常账单,发现其中可能存在的问题并给出警告。典型的应用环境包括医疗器材滥用、手术过程与病情诊断不符、过度收费等。提早检测出医疗过程中的问题将为国家保险机构、患者、私立保险机构节省大量花费。
3.4 辅助诊断
参考文献[29,30]认为患者的基因型、生活方式、身体特征、多重病患严重影响了治疗效果。提早根据患者的特征设计个性化的治疗方案将有助于降低成本,减少医疗事故。参考文献[31]认为通过挖掘用户基因信息和电子病例可以做到:根据患者基因信息和患者的其他特征预测各种治疗方案可能的副作用;选择更好的治疗方案,而不是尝试各种治疗方案;帮助用户预防疾病或削弱疾病的影响。之后,参考文献[31]设计了一套系统Mayo用来收集、存储个性化治疗所需要的数据,并为数据分析师提供分析数据的平台。参考文献[32]则通过分析病人的特征数据并匹配相似病例以帮助医师诊断。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08