
sas评分卡之没有因变量我也能建模
在建模中,并不是什么时候都有因变量的,那么在没有因变量的情况下,我们应该怎么无耻的还要建模呢,你会说聚类啊,无监督嘛,关联规则嘛。但是我要说的我有ahp(层次分析法)
说好的,假设写了proc iml就要出综合评价法的文章,今天就来说第一个综合评价法—层次分析法,可以在维度以及数据特别紧缺的请况下建模。综合评价就是利用过往的经验给变量人为赋权重。你是不是觉得我说的很扯淡,但是我要用栗子给你明明白白的觉得我在扯淡。
层次分析法的理论
层次分析法(Analytic Hierarchy Process,简称AHP)是对一些较为复杂、较为模糊的问题作出决策的简易方法,它特别适用于那些难于完全定量分析的问题。
运用层次分析法建模,大体上可按下面四个步骤进行:
(i)建立递阶层次结构模型;
(ii)构造出各层次中的所有判断矩阵;
(iii)层次单排序及一致性检验;
(iv)层次总排序及一致性检验。
递阶层次结构的建立与特点:
(i)最高层:这一层次中只有一个元素,一般它是分析问题的预定目标或理想结果,因此也称为目标层。
(ii)中间层:这一层次中包含了为实现目标所涉及的中间环节,它可以由若干个层次组成,包括所需考虑的准则、子准则,因此也称为准则层。
(iii)最底层:这一层次包括了为实现目标可供选择的各种措施、决策方案等,此也称为措施层或方案层。
每一层次中各元素所支配的元素一般不要超过9 个。这是因为支配的元素过多会给两两比较判断带来困难。
一、构造判断矩阵:
二、层次单排序及一致性检验
判断矩阵的一致性检验的步骤:
三、层次总排序及一致性检验
理论就上面这些,来自:http://blog.sina.com.cn/s/blog_a16714bf0101dhfg.html
我要举一个例子
现在我用一个数据部门的例子来解释这个算法。譬如你们公司有很多家网点或者分行,现在是年终了,领导跟你说现在公司想给你们公司所有分行评个级,给个奖金啥的。现在给你6个维度,就是网点的,成单量,放款金额,逾期率,纯盈利金额,计划达成率,人均交单量。叫你评个级撒。那你怎么办?听我来吹牛逼。
首先第一步,你拿这几个维度给你觉得有经验的领导看下,最少找3个以上,这就要看你们平时跟领导关系好不好,然后给你6个维度重要性排名,取你找的这些领导的排名的平均数作为这个这个变量的最终排名,如果没有领导理你,那你就自己排吧。
假设我就找了我几个领导排了排名,出现下面这张表:
放款金额 |
成单量 |
逾期率 |
人均交单量 |
计划达成率 |
纯盈利金额 |
2.432 |
2.432 |
2.432 |
0.608 |
1.216 |
4.864 |
假设呢,我们公司比较小,暂时只开了四个分行,这四个分行的六大指标如下:
放款金额 |
成单量 |
逾期率 |
人均交单量 |
计划达成率 |
纯盈利金额 |
2.432 |
2.432 |
2.432 |
0.608 |
1.216 |
4.864 |
结合这个图看。
得到的a矩阵。
按照层次分析法的套路,我们现在要计算一个A的最大特征根及其对应的特征向量:
我们用proc iml来计算。
proc iml;
A={1 1 1 4 2 0.5,
1 1 2 4 2 0.5,
1 0.5 1 5 3 0.5,
0.25 0.25 0.2 1 0.333 0.333,
0.5 0.5 0.333 3 1 0.333,
2 2 2 3 3 1};
val=eigval(A);
vec=eigvec(A);
lamda=val[1,1];
w13=vec[ ,1];
print val vec lamda w13;
结果:
val=eigval(a)表示val是a特征值; 用vec =eigvec(a)表示vec是a特征向量。
proc iml;
CI=( 6.261296-6)/(6-1);
CR=CI/1.24;
print CI CR;
结果:
上面的理论知识中已经有公式,翻前面的理论知识看下就知道这个为什么这么算啦。
一致性检验:一致性比率CR=0.0944586<0.1,则一致性检验通过,W13可以作为权向量。
那个1.24是整理产出的,因为是6个维度对应的是1.24。以上就是我算准则层对于方案层的一个矩阵分析。
接下来我们需要作出每个方案层对于决策层的矩阵,那就是6个矩阵。
放款金额对各大分行的矩阵。矩阵怎么来呢?
方案 准则 |
中国分行 |
俄罗斯分行 |
美国分行 |
英国分行 |
放款金额 |
1.663 |
4.989 |
0.8315 |
0.8315 |
用这个数据来组成矩阵,套路跟刚才那个准则层的差不多。只是维度变了:
我做了个表格:
跟刚才的准则层一样,也需要算出矩阵的特征向量以及最大特征根。
proc iml;
B1={1 0.333 2 2,
3 1 5 4,
0.5 0.2 1 0.5,
0.5 0.25 2 1};
val=eigval(B1);
vec=eigvec(B1);
lamda=val[1,1];
w31=vec[ ,1];
print val vec lamda w31;
结果:
/*一致性检验:*/
proc iml;
CI=( 4.0563715-4)/(4-1);
CR=CI/0.90;
print CI CR;
结果:
一致性检验:一致性比率CR=0.0208783<0.1,则一致性检验通过,W31可以作为权向量。
一次类推算出其余的6个。
是矩阵的最大特征根。
6个矩阵的一致性检验:
一致性比率CR1=0.0208783<0.1,则一致性检验通过,W31可以作为权向量。
一致性比率CR2=0.0437436<0.1,则一致性检验通过,W32可以作为权向量。
一致性比率CR3= 0.0016285<0.1,则一致性检验通过,W33可以作为权向量。
一致性比率CR4=0.0055705<0.1,则一致性检验通过,W34可以作为权向量。
一致性比率CR5=0.0297501 <0.1,则一致性检验通过,W35可以作为权向量。
一致性比率CR6=0.0936616<0.1,则一致性检验通过,W36可以作为权向量。
将每个归一化的w系列的组合起来之后,算出权重w之后,再跟原来的准则层的w13相乘,既可以得出每个分行的得分。
proc iml;
W13={0.170,0.197,0.180,0.047,0.120,0.286};
W31={0.214,0.550,0.094,0.142};
W32={0.468,0.211,0.061,0.260};
W33={0.190,0.364,0.066,0.380};
W34={0.400,0.379,0.081,0.140};
W35={0.068,0.115,0.181,0.636};
W36={0.544,0.125,0.069,0.262};
W=W31||W32||W33||W34||W35||W36;
WW=W*W13;
print WW;
结果:
那么就是中国分行是0.34532,俄罗斯分行是0.26795,美国分行是0.85138,英国分行是0.301592。这时候我就报告领导,中国分行的是评级中的第一名。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15