京公网安备 11010802034615号
经营许可证编号:京B2-20210330
我最近在学习R语言,但是估R语言我应该没能跟sas一样玩那么好。今天来更新在机器学习中的一些专业术语,例如一些损失函数,正则化,核函数是什么东西。
损失函数:损失函数是用来衡量模型的性能的,通过预测值和真实值之间的一些计算,得出的一个值,这个值在模型拟合的时候是为了告诉模型是否还有可以继续优化的空间(模型的目的就是希望损失函数是拟合过的模型中最小的),损失函数一般有以下几种,为什么损失函数还有几种呢,因为不同的算法使用的损失函数有所区分。
1
0-1损失函数:
这个损失函数的含义,是最简单的,预测出来的分类结果跟真实对比,一样的返回1,不一样返回0,这种方式比较粗暴,因为有时候是0.999的时候,其实已经很接近了,但是按照这个损失函数的标准,还是返回0,所以这个损失函数很严格,严格到你觉得特别没有人性。
2
感知损失函数
那么这个感知损失函数,其实是跟混淆矩阵那种算法是一样,设定一个阀值,假设真实值与预测值之间的差距超过这个阀值的话,就是1,小于的话就是0,这种就多多少少弥补了0-1损失函数中的严格,假设以0.5为界限,那么比0.5大的我们定义为坏客户,小于0.5定义为坏客户,假设用这种方式,那么大部分好客户聚集在0.6,以及大部分好客户聚集在0.9这个位置,感知损失函数,判断的时候可能是差不多的效果。但是很明显两个模型的效果是,后者要好。当然你在实际的做模型的时候也不会单靠一个损失函数衡量模型啦,只是你在拟合的时候可能使用的损失函数来拟合出机器觉得是最优的。
3
Hinge损失函数
Hinge损失函数是源自于支持向量机中的,因为支持向量机中,最终的支持向量机的分类模型是能最大化分类间隔,又减少错误分类的样本数目,意味着一个好的支持向量机的模型,需要满足以上两个条件:1、最大化分类间隔,2、错误分类的样本数目。错误分类的样本数目,就回到了损失函数的范畴。
我们看上面这张图:把这四个点,根据下标分别叫1、2、3、4点,可以看到hinge衡量的是该错误分类的点到该分类的分类间隔线之间的距离,像1点,他虽然没有被正确分类,但是是在分类间隔中,所以他到正确被分类的线的距离是小于1的(分类间隔取的距离是1),那么像2,3,4点他们到正确的分类间隔的距离都是超过1,正确分类的则置为0,那么回到上面的公式,支持向量机中,分类使用+1,-1表示,当样本被正确分类,那么就是0,即hinge的值为0,那么如果在分隔中的时候,hinge的值为1-真实值与预测值的积。举个例子,当真实值yi是1,被分到正确分类的分类间隔之外,那么yi=1,>1,那么这时候即样本被正确分类hinge值则为0。那么如果是被错误分类,则hinge值就是大于1了。这就是hinge损失函数啦。
4
交叉熵损失函数
这个函数是在逻辑回归中最大化似然函数推出来,在公式层面的理解,可以看到就是计算样本的预测概率为目标值的概率的对数。这个你不想听公式推导也看下去啦,因为这对于优化问题的理解可以更深刻。
以上的公式中的h(x)代表的样本是目标值的概率,那么模型最极端的预测是什么,y=1的样本的h(x)都为1,y=0的样本的h(x)都是0,那么你这个模型的正确率就是100%,但在实际建模中这个可能性是极低的,所以这时候使用最大似然估计将全部的样本的预测值连乘,那么这时候意味着对于y=1的样本,h(x)的值越大越好,y=0的时候h(x)的值越小越好即1-h(x)的值越大越好,这时候似然估计这种相乘的方式貌似很难衡量那个模型是最好的,所以加上log函数的转化之后再加上一个负号,全部的项变成相加,这时候我们只要求得-ln(l())最小就可以了。这就是交叉熵损失函数。那么这里你可能会问,为什么用的是log,不是用什么exp,幂函数这些,因为log是单调递增的,在将式子从相乘转成相加的同时,又保证了数值越大,ln(x)的值越大。
5
平方误差
平方差,这个大家很熟啦,线性回归很爱用这个,这个衡量线性关系的时候比较好用,在分类算法中比较少用。
6
绝对误差
那么这个也是回归中比较常用的,也不做多的解释。
7
指数误差
这是adaboosting中的一个损失函数,假设目标变量还是用-1,1表示,那么就以为在上面的公式中,当yi=1的时候,就希望越大越好,即越小越好,同样可推当yi=0的时候。思想跟逻辑回归类似,但是因为这里使用-1,1表示目标变量,所以损失函数有些区别。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23