
常用的几种神经网络
前向反馈网络和感知器是直线向前的,信息从前向后(分别是输入和输出)传播。神经网络通常被描述成多层,其中每一层都由输入、隐藏层、输出单元构成。一层单一网络内部绝对不会有任何连接而通常在相邻的层之间,神经元是完全相连的(每层的每个神经元都与另外一层的每个神经元相连接)。最简单某种程度上也是最实用的网络由两个输入单元和一个输出单元,这种网络可以被用作逻辑门模型。通常FFNNs是通过向后传播训练的,给网络成组的数据集包括“输入”和“预想的输出”。这种方式称为有监督学习,与无监督学习相反。误差被向后传播,而误差可以通过MSE或者线性误差来度量。假设网络由足够多的隐藏神经元,它理论上来说总是可以模拟输入和输出之间的关系的。实际上这种网络本身用途很首先,但是它们通常和别的网络合并来生成其他类型的网络。
霍普菲尔网络的每个神经元都与其他神经元相连接;它是一碗完全纠缠在一起的意大利面。每个节点在训练前都是输入点,然后训练中都是隐藏节点,训练结束后又是输出节点。这些网络会设定神经元的值为所需要的模式,然后计算全职,通过这种方法来训练模型。在这之后权重不会再改变。一旦训练成一种或多种模式,网络会一直收敛到一种学习好的模式,因为网络只有在这些状态下才是稳定的。注意到它不会一直符合所要的状态。它能够部分稳定是因为全局的“能量”或“温度”在训练中是逐步减少的。
卷积神经网络和大多数其他类型的网络都很不相同。他们最初用来做图像处理,后来也用在其他类型的输入数据比如音频。一个典型的CNN应用是,当你给网络输入图像,网络会对数据进行分类,例如如果你输入的是猫的照片,它会给出标签“猫”。CNN通常以一个输入“扫描仪”开始,而它并不会在理科解析所有的训练数据。举例来说,输入一个200*200像素的图像,你肯定不想要有40000节点的一层。相反,你建立一个扫描输入层比如20*20,把大图像左上角的20*20像素进行扫描。一旦前20*20经过处理,逐像素向右移动这个扫描器来扫描所有的剩余图像。注意到,我们并没有把处理过的20*20像素挪开,也没有把图像分成20*20的小块,而是使用这个20*20的扫描器对所有像素进行扫描。输入数据然后进行卷积层而不是普通曾,意味着不是所有的节点都和其他节点相连接。每个节点都只和她最近的节点相连(远近取决于具体的实现,但通常不会很多)。这些卷积层也倾向于变小当它们越老越深的时候,通常是输入大小最容易整除的因子(如20可能变成10,然后5)。2的幂在这里会经常被使用,因为它们能够很完全的分离:32,16,8,4,2,1。除了这些卷积层,通常还有特征池化层。池化是一种滤出细节部分的方法:最常用的池化技术是极大值池化,比如我们对2*2的像素,返回其R值最大的像素。对音频使用CNN,我们只需要输入音频波,然后一点一点增加长度。实际中对CNN的使用通常在末端增加一个FFNN用来深入处理数据,通常要能处理高度非线性抽象分类问题。CNN+FFNN这种网络通常称为DCNN,但是DCNN和CNN的名称和缩写通常可以互相代替。
去卷积神经网络,也称作逆图形网络,是卷积神经网络的逆过程。对该网络输入单词“猫”,网络通过比较它生成的图片和真是猫图片,输出它认为满足输入条件猫的图片。DNN可以和FFNN结合一起使用。
生成对抗网络是一种不同的网络,他们是双胞胎:两个网络一起工作。对抗生成网络有任何两个网络组成(通常是FF和CNN的组合),其中一个负责生成内容另一个要判断内容。判别网络要么接受训练数据,要么接受生成网络生成的数据作为输入。判别网络的预测精度被当做生成网络的误差的一部分。这样产生一组对抗,当判别网络能越来越精细的判别生成数据和真实数据,生成网络也会生成越来越难以预测的数据。这种方式在某种程度上能很好的运行时因为再复杂的带噪声的模式最终都是可预测的,但是和输入数据有相似特征的生成数据却很难学习判别。对抗生成网络非常难训练,因为我们不仅仅是训练两个网络(每一个都有他们各自的问题),而且要处理他们之间的动态平衡关系。如果预测或生成网络比另一个网络好,那么对抗生成网络将不会收敛,因为本质上这两个网络就存在着分歧。
周期神经网络是带时间周期的FFNN:他们不是无状态的;他们在时间上有相关性。神经元不仅从输入接收信息,而且还要接收他们自身前一个周期点的信息。这意味着,我们输入和训练网络的过程是很重要的:先输入“牛奶”后“饼干”与先“饼干”后“牛奶”,可能会产生不同的结果。RNN一个重要的问题是退化(或爆炸式)梯度问题,依赖于激活函数的使用,信息随着时间快速损失,就像非常深的FFNN随着深度的增加损失信息一样。直观上这不会带来很大问题因为他们仅仅是权重而不是神经元状态,但是带时间的权重实际上就是存储信息的地方;如果权重取值为0或者1 000 000,之前的状态就没多大用处了。RNN原则上讷讷够在很多领域使用,尽管大多数数据形式实际上都没有时间线(比如 不想声音和视频),但是它们都可以被表示成序列。一副图片或一串文字可以看做在每个时间点上一个像素或者一个字符,所以依赖时间的权重是在序列中某个之前出现的值上使用,而不是实际上多少秒之前发生的。通常,周期性网络对于演进或补全信息非常有效,比如自动补全。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15