引自百度:决策树算法是一种逼近离散函数值的方法。它是一种典型的分类方法,首先对数据进行处理,利用归纳算法生成可读的规则和决策树,然后使用决策对新数据进行分析。本质上决策树是通过一系列规则对数据进行分类的过程
决策树的算法原理:
(1)通过把实例从根节点开始进行排列到某个叶子节点来进行分类的。
(2)叶子节点即为实例所属的分类的,树上的每个节点说明了实例的属性。
(3)树的生成,开始的所有数据都在根节点上,然后根据你所设定的标准进行分类,用不同的测试属性递归进行数据分析。
决策树的实现主要思路如下:
(1)先计算整体类别的熵
(2)计算每个特征将训练数据集分割成的每个子集的熵,并将这个熵乘以每个子集相对于这个训练集的频率,最后将这些乘积累加,就会得到一个个特征对应的信息增益。
(3)选择信息增益最大的作为最优特征分割训练数据集
(4)递归上述过程
(5)递归结束条件:训练集的所有实例属于同一类;或者所有特征已经使用完毕。
代码如下:
[python] view plain copy
#!/usr/bin/python
#coding=utf-8
import operator
import math
#定义训练数据集
def createDataSet():
#用书上图8.2的数据
dataSet = [
['youth', 'no', 'no', 'no'],
['youth', 'yes', 'no', 'yes'],
['youth', 'yes', 'yes', 'yes'],
['middle_aged', 'no', 'no', 'no'],
['middle_aged', 'no', 'yes', 'no'],
['senior', 'no', 'excellent', 'yes'],
['senior', 'no', 'fair', 'no']
]
labels = ['age', 'student', 'credit_rating']
return dataSet, labels
#实现熵的计算
def calShannonEnt(dataSet):
numEntries = len(dataSet)
labelCounts = {}
for featVect in dataSet:
currentLabel = featVect[-1]
if currentLabel not in labelCounts:
labelCounts[currentLabel] = 0
labelCounts[currentLabel] += 1
shannonEnt = 0.0
for key in labelCounts:
prob = float(labelCounts[key]) / numEntries
shannonEnt -= prob * math.log(prob, 2)
return shannonEnt
#分割训练数据集
def splitDataSet(dataSet, axis, value):
retDataSet = []
for featVec in dataSet:
if featVec[axis] == value:
reducedFeatVec = featVec[:axis]
reducedFeatVec.extend(featVec[axis+1:])
retDataSet.append(reducedFeatVec)
return retDataSet
#一个确定“最好地”划分数据元组为个体类的分裂准则的过程
def Attribute_selection_method(dataSet):
numFeatures = len(dataSet[0]) - 1
baseEntropy = calShannonEnt(dataSet)
bestInfoGain = 0.0
bestFeature = -1
for i in range(numFeatures):
featList = [example[i] for example in dataSet]
uniqueValue = set(featList)
newEntropy = 0.0
for value in uniqueValue:
subDataSet = splitDataSet(dataSet, i, value)
prob = len(subDataSet) / len(dataSet)
newEntropy += prob * calShannonEnt(subDataSet)
infoGain = baseEntropy - newEntropy
if infoGain > bestInfoGain:
bestInfoGain = infoGain
bestFeature = i
return bestFeature
#采用majorityvote策略,选择当前训练集中实例数最大的类
def majorityCnt(classList):
classCount = {}
for vote in classList:
if vote not in classCount.keys():
classCount[vote] = 0
classCount[vote] += 1
sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0]
#创建决策树
def Generate_decision_tree(dataSet, labels):
classList = [example[-1] for example in dataSet]
# 训练集所有实例属于同一类
if classList.count(classList[0]) == len(classList):
return classList[0]
# 训练集的所有特征使用完毕,当前无特征可用
if len(dataSet[0]) == 1:
return majorityCnt(classList)
bestFeat = Attribute_selection_method(dataSet)
bestFeatLabel = labels[bestFeat]
myTree = {bestFeatLabel: {}}
del(labels[bestFeat])
featValues = [example[bestFeat] for example in dataSet]
uniqueVals = set(featValues)
for value in uniqueVals:
subLabels = labels[:]
myTree[bestFeatLabel][value] = Generate_decision_tree(splitDataSet(dataSet, bestFeat, value), subLabels)
return myTree
def main():
print ' ____ _ _ _____ '
print ' | _ \ ___ ___(_)___(_) ___ _ _|_ _| __ ___ ___ '
print ''''' | | | |/ _ \/ __| / __| |/ _ \| '_ \| || '__/ _ \/ _ \\'''
print ' | |_| | __/ (__| \__ \ | (_) | | | | || | | __/ __/'
print ' |____/ \___|\___|_|___/_|\___/|_| |_|_||_| \___|\___|决策树'
print
myDat, labels = createDataSet()
myTree = Generate_decision_tree(myDat, labels)
print '[*]生成的决策树:\n',myTree
if __name__ == '__main__':
main()
这里的数据也是使用书上的(《数据挖掘概念与技术 第三版》)。
运行结果:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09