京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python使用遗传算法解决最大流问题
本文为大家分享了Python遗传算法解决最大流问题,供大家参考,具体内容如下
Generate_matrix
def Generate_matrix(x,y):
import numpy as np
import random
return np.ceil(np.array([random.random()*10 for i in range(x*y)]).reshape(x,y))
Max_road
def Max_road(A,degree,start):
import random
import numpy as np
import copy
def change(M,number,start): # number 控制变异程度 start 控制变异量
x , y = M.shape
for i in range(start,x):
Line = zip(range(len(M[i])),M[i])
index_0 = [t[0] for t in Line if t[1]==0] # 获取 0 所对应的下标
index_1 = [t[0] for t in Line if t[1]==1] # 获取 1 所对应的下标
M[i][random.sample(index_0,number)[0]]=1 # 随机改变序列中 number 个值 0->1
M[i][random.sample(index_1,number)[0]]=0 # 随机改变序列中 number 个值 1->0
return M
x,y = A.shape
n=x
generation = y
#初始化一个有 n 中情况的解决方案矩阵
init_solve = np.zeros([n,x+y-2])
init=[1]*(x-1)+[0]*(y-1)
for i in range(n) :
random.shuffle(init)
init_solve[i,:] = init # 1 表示向下走 0 表示向右走
solve = copy.copy(init_solve)
for loop in range(generation):
Sum = [A[0,0]]*n # 用于记录每一种方案的总流量
for i in range(n):
j=0;k=0;
for m in solve[i,:]:
if m==1:
k=k+1
else:
j=j+1
Sum[i] = Sum[i] + A[k,j]
Sum_index = zip(range(len(Sum)),Sum)
sort_sum_index = sorted(Sum_index,key = lambda d : d[1] , reverse =True) # 将 方案 按照流量总和排序
Max = sort_sum_index[0][1] # 最大流量
#print Max
solve_index_half = [a[0] for a in sort_sum_index[:n/2]] # 保留排序后方案的一半
solve = np.concatenate([solve[solve_index_half],solve[solve_index_half]]) # 将保留的一半方案 进行复制 ,复制部分用于变异
change(solve,int((x+y-2)*degree)+1 ,start) # 变异
return solve[0] , Max
Draw_road
def Draw_road(road,A):
import pylab as plt
import seaborn
seaborn.set()
x , y =A.shape
# 将下移和右移映射到绘图坐标上
Road = [(1,x)] # 初始坐标
j=1;k=x;
for m in road:
if m==1:
k=k-1
else:
j=j+1
Road.append((j,k))
# print Road
for i in range(len(road)):
plt.plot([Road[i][0],Road[i+1][0]],[Road[i][1],Road[i+1][1]])
实际运行的例子
In [119]: A = Generate_matrix(4,6)
In [120]: A
Out[120]:
array([[ 10., 1., 7., 10., 8., 8.],
[ 4., 8., 8., 4., 8., 2.],
[ 9., 8., 8., 3., 9., 8.],
[ 7., 2., 5., 9., 3., 8.]])
In [121]: road , M=Max_road(A,0.1,2)
In [122]: Draw_road(road,A)
较大规模的情况
以上就是本文的全部内容,希望对大家的学习有所帮助
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20