京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言定义多维数组
数组有一个特征属性叫做维数向量(dim属性),维数向量是一个元素取正整数值的向量 ,其长度是数组的维数,比如维数向量有两个元素时数组为二维数组(矩阵)。维数向量的 每一个元素指定了该下标的上界,下标的下界总为1。
一组值只有定义了维数向量(dim属性)后才能被看作是数组。比如:
z <- 1:1500
dim(z) <- c(3, 5, 100)
这时z已经成为了一个维数向量为c(3,5,100)的三维数组。也可以把向量定义为一维数组 ,例如:
dim(z) <- 1500
数组元素的排列次序缺省情况下是采用FORTRAN的数组元素次序(按列次序),即第一下 标变化最快,最后下标变化最慢,对于矩阵(二维数组)则是按列存放。例如,假设数组a的 元素为1:24,维数向量为c(2,3,4),则各元素次序为a[1,1,1], a[2,1,1], a[1,2,1], a[2,2,1], a[1,3,1], …, a[2,3,4]。
用函数array()或matrix()可以更直观地定义数组。array()函数的完全使用为array(x, dim=length(x), dimnames=NULL),其中x是第一自变量,应该是一个向量,表示数组的元素 值组成的向量。dim参数可省,省略时作为一维数组(但不同于向量)。dimnames属性可以省 略,不省略时是一个长度与维数相同的列表(list,见后面),列表的每个成员为一维的名 字。例如上面的z可以这样定义:
z <- array(1:1500, dim=c(3,5,100))
函数matrix()用来定义最常用的一种数组:二维数组,即矩阵。其完全格式为 matrix(data = NA, nrow = 1, ncol = 1, byrow = FALSE, dimnames = NULL)
矩阵运算
矩阵是二维数组,但因为其应用广泛所以对它定义了一些特殊的运算和操作。
函数t(A)返回矩阵A的转置。nrow(A)为矩阵A的行数,ncol(A)为矩阵A的列数。
矩阵之间进行普通的加减乘除四则运算仍遵从一般的数组四则运算规则,即数组的对应元 素之间进行运算,所以注意A*B不是矩阵乘法而是矩阵对应元素相乘。
要进行矩阵乘法,使用运算符%%,A%%B表示矩阵A乘以矩阵B(当然要求A的列数等于B的 行数)。例如:
A <- matrix(1:12, nrow=4, ncol=3, byrow=T)
B <- matrix(c(1,0), nrow=3, ncol=2, byrow=T)
A
[,1] [,2] [,3] [1,] 1 2 3 [2,] 4 5 6 [3,] 7 8 9 [4,] 10 11 12
B [,1] [,2] [1,] 1 0 [2,] 1 0 [3,] 1 0
A %*% B
[,1] [,2] [1,] 6 0 [2,] 15 0 [3,] 24 0 [4,] 33 0
另外,向量用在矩阵乘法中可以作为行向量看待也可以作为列向量看待,这要看哪一种观 点能够进行矩阵乘法运算。例如,设x是一个长度为n的向量,A是一个 R语言定义多维数组和数组的运算矩阵,则“x %% A %% x”表示二次型 R语言定义多维数组和数组的运算。但是,有时向量在矩阵乘法中的地位并不 清楚,比如“x %% x”就既可能表示内积 R语言定义多维数组和数组的运算也可能表示 R语言定义多维数组和数组的运算阵 R语言定义多维数组和数组的运算。因为前者较常用,所以S选择表示前者, 但内积最好还是用crossprod(x)来计算。要表示 R语言定义多维数组和数组的运算,可以用“cbind(x) %% x”或“x %*% rbind(x) ”。
函数crossprod(X, Y)表示一般的交叉乘积(内积) R语言定义多维数组和数组的运算,即X的每一列与Y的每一列的内积组成的矩
阵。如果X和Y都是向量则是一般的内积。只写一个参数X的crossprod(X)计算X自身的内积 R语言定义多维数组和数组的运算。
其它矩阵运算还有solve(A,b)解线性方程组 R语言定义多维数组和数组的运算,solve(A)求方阵A的逆矩阵,svd()计算奇 异值分解,qr()计算QR分解,eigen()计算特征向量和特征值
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22