
R语言定义多维数组
数组有一个特征属性叫做维数向量(dim属性),维数向量是一个元素取正整数值的向量 ,其长度是数组的维数,比如维数向量有两个元素时数组为二维数组(矩阵)。维数向量的 每一个元素指定了该下标的上界,下标的下界总为1。
一组值只有定义了维数向量(dim属性)后才能被看作是数组。比如:
z <- 1:1500
dim(z) <- c(3, 5, 100)
这时z已经成为了一个维数向量为c(3,5,100)的三维数组。也可以把向量定义为一维数组 ,例如:
dim(z) <- 1500
数组元素的排列次序缺省情况下是采用FORTRAN的数组元素次序(按列次序),即第一下 标变化最快,最后下标变化最慢,对于矩阵(二维数组)则是按列存放。例如,假设数组a的 元素为1:24,维数向量为c(2,3,4),则各元素次序为a[1,1,1], a[2,1,1], a[1,2,1], a[2,2,1], a[1,3,1], …, a[2,3,4]。
用函数array()或matrix()可以更直观地定义数组。array()函数的完全使用为array(x, dim=length(x), dimnames=NULL),其中x是第一自变量,应该是一个向量,表示数组的元素 值组成的向量。dim参数可省,省略时作为一维数组(但不同于向量)。dimnames属性可以省 略,不省略时是一个长度与维数相同的列表(list,见后面),列表的每个成员为一维的名 字。例如上面的z可以这样定义:
z <- array(1:1500, dim=c(3,5,100))
函数matrix()用来定义最常用的一种数组:二维数组,即矩阵。其完全格式为 matrix(data = NA, nrow = 1, ncol = 1, byrow = FALSE, dimnames = NULL)
矩阵运算
矩阵是二维数组,但因为其应用广泛所以对它定义了一些特殊的运算和操作。
函数t(A)返回矩阵A的转置。nrow(A)为矩阵A的行数,ncol(A)为矩阵A的列数。
矩阵之间进行普通的加减乘除四则运算仍遵从一般的数组四则运算规则,即数组的对应元 素之间进行运算,所以注意A*B不是矩阵乘法而是矩阵对应元素相乘。
要进行矩阵乘法,使用运算符%%,A%%B表示矩阵A乘以矩阵B(当然要求A的列数等于B的 行数)。例如:
A <- matrix(1:12, nrow=4, ncol=3, byrow=T)
B <- matrix(c(1,0), nrow=3, ncol=2, byrow=T)
A
[,1] [,2] [,3] [1,] 1 2 3 [2,] 4 5 6 [3,] 7 8 9 [4,] 10 11 12
B [,1] [,2] [1,] 1 0 [2,] 1 0 [3,] 1 0
A %*% B
[,1] [,2] [1,] 6 0 [2,] 15 0 [3,] 24 0 [4,] 33 0
另外,向量用在矩阵乘法中可以作为行向量看待也可以作为列向量看待,这要看哪一种观 点能够进行矩阵乘法运算。例如,设x是一个长度为n的向量,A是一个 R语言定义多维数组和数组的运算矩阵,则“x %% A %% x”表示二次型 R语言定义多维数组和数组的运算。但是,有时向量在矩阵乘法中的地位并不 清楚,比如“x %% x”就既可能表示内积 R语言定义多维数组和数组的运算也可能表示 R语言定义多维数组和数组的运算阵 R语言定义多维数组和数组的运算。因为前者较常用,所以S选择表示前者, 但内积最好还是用crossprod(x)来计算。要表示 R语言定义多维数组和数组的运算,可以用“cbind(x) %% x”或“x %*% rbind(x) ”。
函数crossprod(X, Y)表示一般的交叉乘积(内积) R语言定义多维数组和数组的运算,即X的每一列与Y的每一列的内积组成的矩
阵。如果X和Y都是向量则是一般的内积。只写一个参数X的crossprod(X)计算X自身的内积 R语言定义多维数组和数组的运算。
其它矩阵运算还有solve(A,b)解线性方程组 R语言定义多维数组和数组的运算,solve(A)求方阵A的逆矩阵,svd()计算奇 异值分解,qr()计算QR分解,eigen()计算特征向量和特征值
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28