
R语言定义多维数组
数组有一个特征属性叫做维数向量(dim属性),维数向量是一个元素取正整数值的向量 ,其长度是数组的维数,比如维数向量有两个元素时数组为二维数组(矩阵)。维数向量的 每一个元素指定了该下标的上界,下标的下界总为1。
一组值只有定义了维数向量(dim属性)后才能被看作是数组。比如:
z <- 1:1500
dim(z) <- c(3, 5, 100)
这时z已经成为了一个维数向量为c(3,5,100)的三维数组。也可以把向量定义为一维数组 ,例如:
dim(z) <- 1500
数组元素的排列次序缺省情况下是采用FORTRAN的数组元素次序(按列次序),即第一下 标变化最快,最后下标变化最慢,对于矩阵(二维数组)则是按列存放。例如,假设数组a的 元素为1:24,维数向量为c(2,3,4),则各元素次序为a[1,1,1], a[2,1,1], a[1,2,1], a[2,2,1], a[1,3,1], …, a[2,3,4]。
用函数array()或matrix()可以更直观地定义数组。array()函数的完全使用为array(x, dim=length(x), dimnames=NULL),其中x是第一自变量,应该是一个向量,表示数组的元素 值组成的向量。dim参数可省,省略时作为一维数组(但不同于向量)。dimnames属性可以省 略,不省略时是一个长度与维数相同的列表(list,见后面),列表的每个成员为一维的名 字。例如上面的z可以这样定义:
z <- array(1:1500, dim=c(3,5,100))
函数matrix()用来定义最常用的一种数组:二维数组,即矩阵。其完全格式为 matrix(data = NA, nrow = 1, ncol = 1, byrow = FALSE, dimnames = NULL)
矩阵运算
矩阵是二维数组,但因为其应用广泛所以对它定义了一些特殊的运算和操作。
函数t(A)返回矩阵A的转置。nrow(A)为矩阵A的行数,ncol(A)为矩阵A的列数。
矩阵之间进行普通的加减乘除四则运算仍遵从一般的数组四则运算规则,即数组的对应元 素之间进行运算,所以注意A*B不是矩阵乘法而是矩阵对应元素相乘。
要进行矩阵乘法,使用运算符%%,A%%B表示矩阵A乘以矩阵B(当然要求A的列数等于B的 行数)。例如:
A <- matrix(1:12, nrow=4, ncol=3, byrow=T)
B <- matrix(c(1,0), nrow=3, ncol=2, byrow=T)
A
[,1] [,2] [,3] [1,] 1 2 3 [2,] 4 5 6 [3,] 7 8 9 [4,] 10 11 12
B [,1] [,2] [1,] 1 0 [2,] 1 0 [3,] 1 0
A %*% B
[,1] [,2] [1,] 6 0 [2,] 15 0 [3,] 24 0 [4,] 33 0
另外,向量用在矩阵乘法中可以作为行向量看待也可以作为列向量看待,这要看哪一种观 点能够进行矩阵乘法运算。例如,设x是一个长度为n的向量,A是一个 R语言定义多维数组和数组的运算矩阵,则“x %% A %% x”表示二次型 R语言定义多维数组和数组的运算。但是,有时向量在矩阵乘法中的地位并不 清楚,比如“x %% x”就既可能表示内积 R语言定义多维数组和数组的运算也可能表示 R语言定义多维数组和数组的运算阵 R语言定义多维数组和数组的运算。因为前者较常用,所以S选择表示前者, 但内积最好还是用crossprod(x)来计算。要表示 R语言定义多维数组和数组的运算,可以用“cbind(x) %% x”或“x %*% rbind(x) ”。
函数crossprod(X, Y)表示一般的交叉乘积(内积) R语言定义多维数组和数组的运算,即X的每一列与Y的每一列的内积组成的矩
阵。如果X和Y都是向量则是一般的内积。只写一个参数X的crossprod(X)计算X自身的内积 R语言定义多维数组和数组的运算。
其它矩阵运算还有solve(A,b)解线性方程组 R语言定义多维数组和数组的运算,solve(A)求方阵A的逆矩阵,svd()计算奇 异值分解,qr()计算QR分解,eigen()计算特征向量和特征值
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18