京公网安备 11010802034615号
经营许可证编号:京B2-20210330
国内大数据应用潮起,发展形势稳好
大数据是继云计算、物联网之后IT产业面临又一次颠覆性的技术变革。权威数据显示,2012年大数据对全球IT开支直接或间接推动达960亿美元,而到2016年,这一数字预计将达到2320亿美元。据国内有关机构初步预算,未来中国大数据潜在市场规模有望达到近2万亿元,将给IT行业开拓了一个新的黄金时代。
分析人士指出,大数据时代来临,行业变革才刚刚开始,未来前景广阔。就目前发展来看,国内对大数据的应用领域还较为狭窄,主要集中在金融、物流、公共等三个领域。
公共领域:
交通司法等行业领衔大数据运用
目前我国在公共领域对大数据的运用主要集中在电力行业、智能交通、电子政务、司法系统等四个方面。
电力行业:大数据对该行业的应用主要体现在智能电网上,通过获取人们的用电行为信息,智能电网能够实现优化电的生产、分配以及消耗,有利于电网安全检测与控制(包括大灾难预警与处理、供电与电力调度决策支持和更准确的用电量预测)、客户用电行为分析与客户细分,电力企业精细化运营管理等多方面,实现更科学的电力需求管理。
智能交通:交通运输部今年7月份下发通知,将对公共交通信息化应用系统建设、相关支撑系统建设、数据资源与交换系统建设提供资金支持。在政策利好支撑下,可以从以下三方面掘金智能交通领域。一、从事城市交通系统建设、高速公路信息化建设等领域的上市公司。
电子政务:通过政府信息化,大数据能够提高政府决策的科学性和精准性,提高政府预测预警能力以及应急响应能力,节约决策的成本。以财政部门为例,基于云计算、大数据技术,财政部门可以按需掌握各个部门的数据,并对数据进行分析,做出的决策可以更准确、更高效。另外,也可以依据数据推动财政创新,使财政工作更有效率、更加开放、更加透明。
司法系统:公安市场大规模的信息化和装备投资产生了海量的非结构化数据,公安的实战应用是大数据的重要应用领域。
金融领域:
大数据所带来的社会变革已经深入到人们生活的各个方面,日常的出行、购物、运动、理财等等。金融业面临众多前所未有的跨界竞争对手,市场格局、业务流程将发生巨大改变。未来的金融业将开展新一轮围绕大数据的IT建设投资。
据悉,目前,中国的金融行业数据量已经超过100TB,非结构化数据迅速增长。分析人士认为,中国金融行业正在步入大数据时代的初级阶段。优秀的数据分析能力是当今金融市场创新的关键,资本管理、交易执行、安全和反欺诈等相关的数据洞察力,成为金融企业运作和发展的核心竞争力。
目前,以大数据为代表的新型技术将在两个层面改造金融业。宏源证券表示,一是金融交易形式的电子化和数字化,具体表现为支付电子化、渠道网络化、信用数字化,是运营效率的提升;二是金融交易结构的变化,其中一个重要表现便是交易中介脱媒化,服务中介功能弱化,是结构效率的提升。
伴随着大数据应用、技术革新及商业模式创新,金融业中的银行和券商也迎来巨大的转变。此外,腾讯、阿里巴巴等互联网企业也在凭借其强大的数据积累和客户基础,进军金融业,开拓新的盈利点,这也成为金融产品在线销售的一大推动力。
从银行业来看,业内人士表示,互联网环境改变了金融客户的行为习惯,并且促进交易信息透明化,交易成本显着降低。此外,交易行为和信息数据的掌握方拥有更多的话语权。在互联网技术的推动下,金融行业、互联网行业之间的界线日渐模糊,行业融合日渐深入。
数据显示,2012年年末,四大行网银客户数量已经超过了4.3亿户,招行个人电子银行交易替代率达到了90.66%。交通银行电子银行分流率现已超过76%,而三年前的这一比例还在50%。
从证券业来看,分析人士认为,互联网证券并不是传统证券行业在互联网上的外延化扩张,它将会借助网络技术打造出新的网络证券模式,颠覆性地改变券商的传统经营模式。
在大数据的冲击下,券商现有的业务将各有进退。经纪业务首当其冲,将最先面临转型压力。另外,投行通道中介重要性逐渐衰弱,历史上作为投行收入核心的IPO业务利润贡献度将有所下降。还有,券商资管的下一个爆发点在于集合理财业务、资产证券化和信用业务。大数据将进一步加深资管业务的精细化和专业化,助力这些板块获得新的突破。
总之,随着大资管时代的来临,证券、基金等金融机构迫切需要打通渠道通路,平衡渠道体系格局,低成本高效率的网络渠道有助于帮助证券、基金实现这一目标。
大数据将给各行各业带来变革性机会,但真正大数据运用仍处于发展初级阶段。据美国麦肯锡咨询机构在其一份关于大数据研报中指出,大数据已经对美国健康医疗、欧洲的政府公共管理、个人位置数据、美国的零售业及制造业等五个部门产生了重大的经济影响,其中在公共管理领域,每年产生约2500亿美元(约合1.54亿元人民币)的潜在价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17