
本文实例讲述了Python机器学习之决策树算法。分享给大家供大家参考,具体如下:
决策树学习是应用最广泛的归纳推理算法之一,是一种逼近离散值目标函数的方法,在这种方法中学习到的函数被表示为一棵决策树。决策树可以使用不熟悉的数据集合,并从中提取出一系列规则,机器学习算法最终将使用这些从数据集中创造的规则。决策树的优点为:计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特征数据。缺点为:可能产生过度匹配的问题。决策树适于处理离散型和连续型的数据。
在算法中一般选用ID3,D3算法的核心问题是选取在树的每个节点要测试的特征或者属性,希望选择的是最有助于分类实例的属性。如何定量地衡量一个属性的价值呢?这里需要引入熵和信息增益的概念。熵是信息论中广泛使用的一个度量标准,刻画了任意样本集的纯度。
假设有10个训练样本,其中6个的分类标签为yes,4个的分类标签为no,那熵是多少呢?在该例子中,分类的数目为2(yes,no),yes的概率为0.6,no的概率为0.4,则熵为 :
其中value(A)是属性A所有可能值的集合,是S中属性A的值为v的子集,即
。上述公式的第一项为原集合S的熵,第二项是用A分类S后熵的期望值,该项描述的期望熵就是每个子集的熵的加权和,权值为属于的样本占原始样本S的比例
。所以Gain(S, A)是由于知道属性A的值而导致的期望熵减少。
完整的代码:
# -*- coding: cp936 -*-
from numpy import *
import operator
from math import log
import operator
def createDataSet():
dataSet = [[1,1,'yes'],
[1,1,'yes'],
[1,0,'no'],
[0,1,'no'],
[0,1,'no']]
labels = ['no surfacing','flippers']
return dataSet, labels
def calcShannonEnt(dataSet):
numEntries = len(dataSet)
labelCounts = {} # a dictionary for feature
for featVec in dataSet:
currentLabel = featVec[-1]
if currentLabel not in labelCounts.keys():
labelCounts[currentLabel] = 0
labelCounts[currentLabel] += 1
shannonEnt = 0.0
for key in labelCounts:
#print(key)
#print(labelCounts[key])
prob = float(labelCounts[key])/numEntries
#print(prob)
shannonEnt -= prob * log(prob,2)
return shannonEnt
#按照给定的特征划分数据集
#根据axis等于value的特征将数据提出
def splitDataSet(dataSet, axis, value):
retDataSet = []
for featVec in dataSet:
if featVec[axis] == value:
reducedFeatVec = featVec[:axis]
reducedFeatVec.extend(featVec[axis+1:])
retDataSet.append(reducedFeatVec)
return retDataSet
#选取特征,划分数据集,计算得出最好的划分数据集的特征
def chooseBestFeatureToSplit(dataSet):
numFeatures = len(dataSet[0]) - 1 #剩下的是特征的个数
baseEntropy = calcShannonEnt(dataSet)#计算数据集的熵,放到baseEntropy中
bestInfoGain = 0.0;bestFeature = -1 #初始化熵增益
for i in range(numFeatures):
featList = [example[i] for example in dataSet] #featList存储对应特征所有可能得取值
uniqueVals = set(featList)
newEntropy = 0.0
for value in uniqueVals:#下面是计算每种划分方式的信息熵,特征i个,每个特征value个值
subDataSet = splitDataSet(dataSet, i ,value)
prob = len(subDataSet)/float(len(dataSet)) #特征样本在总样本中的权重
newEntropy = prob * calcShannonEnt(subDataSet)
infoGain = baseEntropy - newEntropy #计算i个特征的信息熵
#print(i)
#print(infoGain)
if(infoGain > bestInfoGain):
bestInfoGain = infoGain
bestFeature = i
return bestFeature
#如上面是决策树所有的功能模块
#得到原始数据集之后基于最好的属性值进行划分,每一次划分之后传递到树分支的下一个节点
#递归结束的条件是程序遍历完成所有的数据集属性,或者是每一个分支下的所有实例都具有相同的分类
#如果所有实例具有相同的分类,则得到一个叶子节点或者终止快
#如果所有属性都已经被处理,但是类标签依然不是确定的,那么采用多数投票的方式
#返回出现次数最多的分类名称
def majorityCnt(classList):
classCount = {}
for vote in classList:
if vote not in classCount.keys():classCount[vote] = 0
classCount[vote] += 1
sortedClassCount = sorted(classCount.iteritems(),key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0]
#创建决策树
def createTree(dataSet,labels):
classList = [example[-1] for example in dataSet]#将最后一行的数据放到classList中,所有的类别的值
if classList.count(classList[0]) == len(classList): #类别完全相同不需要再划分
return classList[0]
if len(dataSet[0]) == 1:#这里为什么是1呢?就是说特征数为1的时候
return majorityCnt(classList)#就返回这个特征就行了,因为就这一个特征
bestFeat = chooseBestFeatureToSplit(dataSet)
print('the bestFeatue in creating is :')
print(bestFeat)
bestFeatLabel = labels[bestFeat]#运行结果'no surfacing'
myTree = {bestFeatLabel:{}}#嵌套字典,目前value是一个空字典
del(labels[bestFeat])
featValues = [example[bestFeat] for example in dataSet]#第0个特征对应的取值
uniqueVals = set(featValues)
for value in uniqueVals: #根据当前特征值的取值进行下一级的划分
subLabels = labels[:]
myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet,bestFeat,value),subLabels)
return myTree
#对上面简单的数据进行小测试
def testTree1():
myDat,labels=createDataSet()
val = calcShannonEnt(myDat)
print 'The classify accuracy is: %.2f%%' % val
retDataSet1 = splitDataSet(myDat,0,1)
print (myDat)
print(retDataSet1)
retDataSet0 = splitDataSet(myDat,0,0)
print (myDat)
print(retDataSet0)
bestfeature = chooseBestFeatureToSplit(myDat)
print('the bestFeatue is :')
print(bestfeature)
tree = createTree(myDat,labels)
print(tree)
对应的结果是:
>>> import TREE
>>> TREE.testTree1()
The classify accuracy is: 0.97%
[[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']]
[[1, 'yes'], [1, 'yes'], [0, 'no']]
[[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']]
[[1, 'no'], [1, 'no']]
the bestFeatue is :
0
the bestFeatue in creating is :
0
the bestFeatue in creating is :
0
{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}
最好再增加使用决策树的分类函数
同时因为构建决策树是非常耗时间的,因为最好是将构建好的树通过 python 的 pickle 序列化对象,将对象保存在磁盘上,等到需要用的时候再读出
def classify(inputTree,featLabels,testVec):
firstStr = inputTree.keys()[0]
secondDict = inputTree[firstStr]
featIndex = featLabels.index(firstStr)
key = testVec[featIndex]
valueOfFeat = secondDict[key]
if isinstance(valueOfFeat, dict):
classLabel = classify(valueOfFeat, featLabels, testVec)
else: classLabel = valueOfFeat
return classLabel
def storeTree(inputTree,filename):
import pickle
fw = open(filename,'w')
pickle.dump(inputTree,fw)
fw.close()
def grabTree(filename):
import pickle
fr = open(filename)
return pickle.load(fr)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18