
Python使用三种方法实现PCA算法
主成分分析,即Principal Component Analysis(PCA),是多元统计中的重要内容,也广泛应用于机器学习和其它领域。它的主要作用是对高维数据进行降维。PCA把原先的n个特征用数目更少的k个特征取代,新特征是旧特征的线性组合,这些线性组合最大化样本方差,尽量使新的k个特征互不相关。
主成分分析(PCA) vs 多元判别式分析(MDA)
PCA和MDA都是线性变换的方法,二者关系密切。在PCA中,我们寻找数据集中最大化方差的成分,在MDA中,我们对类间最大散布的方向更感兴趣。
一句话,通过PCA,我们将整个数据集(不带类别标签)映射到一个子空间中,在MDA中,我们致力于找到一个能够最好区分各类的最佳子集。粗略来讲,PCA是通过寻找方差最大的轴(在一类中,因为PCA把整个数据集当做一类),在MDA中,我们还需要最大化类间散布。
PCA的主要算法如下:
其中协方差矩阵的分解可以通过按对称矩阵的特征向量来,也可以通过分解矩阵的SVD来实现,而在Scikit-learn中,也是采用SVD来实现PCA算法的。
本文将用三种方法来实现PCA算法,一种是原始算法,即上面所描述的算法过程,具体的计算方法和过程,可以参考:A tutorial on Principal Components Analysis, Lindsay I Smith. 一种是带SVD的原始算法,在Python的Numpy模块中已经实现了SVD算法,并且将特征值从大从小排列,省去了对特征值和特征向量重新排列这一步。最后一种方法是用Python的Scikit-learn模块实现的PCA类直接进行计算,来验证前面两种方法的正确性。
用以上三种方法来实现PCA的完整的Python如下:
import numpy as np
from sklearn.decomposition import PCA
import sys
#returns choosing how many main factors
def index_lst(lst, component=0, rate=0):
#component: numbers of main factors
#rate: rate of sum(main factors)/sum(all factors)
#rate range suggest: (0.8,1)
#if you choose rate parameter, return index = 0 or less than len(lst)
if component and rate:
print('Component and rate must choose only one!')
sys.exit(0)
if not component and not rate:
print('Invalid parameter for numbers of components!')
sys.exit(0)
elif component:
print('Choosing by component, components are %s......'%component)
return component
else:
print('Choosing by rate, rate is %s ......'%rate)
for i in range(1, len(lst)):
if sum(lst[:i])/sum(lst) >= rate:
return i
return 0
def main():
# test data
mat = [[-1,-1,0,2,1],[2,0,0,-1,-1],[2,0,1,1,0]]
# simple transform of test data
Mat = np.array(mat, dtype='float64')
print('Before PCA transforMation, data is:\n', Mat)
print('\nMethod 1: PCA by original algorithm:')
p,n = np.shape(Mat) # shape of Mat
t = np.mean(Mat, 0) # mean of each column
# substract the mean of each column
for i in range(p):
for j in range(n):
Mat[i,j] = float(Mat[i,j]-t[j])
# covariance Matrix
cov_Mat = np.dot(Mat.T, Mat)/(p-1)
# PCA by original algorithm
# eigvalues and eigenvectors of covariance Matrix with eigvalues descending
U,V = np.linalg.eigh(cov_Mat)
# Rearrange the eigenvectors and eigenvalues
U = U[::-1]
for i in range(n):
V[i,:] = V[i,:][::-1]
# choose eigenvalue by component or rate, not both of them euqal to 0
Index = index_lst(U, component=2) # choose how many main factors
if Index:
v = V[:,:Index] # subset of Unitary matrix
else: # improper rate choice may return Index=0
print('Invalid rate choice.\nPlease adjust the rate.')
print('Rate distribute follows:')
print([sum(U[:i])/sum(U) for i in range(1, len(U)+1)])
sys.exit(0)
# data transformation
T1 = np.dot(Mat, v)
# print the transformed data
print('We choose %d main factors.'%Index)
print('After PCA transformation, data becomes:\n',T1)
# PCA by original algorithm using SVD
print('\nMethod 2: PCA by original algorithm using SVD:')
# u: Unitary matrix, eigenvectors in columns
# d: list of the singular values, sorted in descending order
u,d,v = np.linalg.svd(cov_Mat)
Index = index_lst(d, rate=0.95) # choose how many main factors
T2 = np.dot(Mat, u[:,:Index]) # transformed data
print('We choose %d main factors.'%Index)
print('After PCA transformation, data becomes:\n',T2)
# PCA by Scikit-learn
pca = PCA(n_components=2) # n_components can be integer or float in (0,1)
pca.fit(mat) # fit the model
print('\nMethod 3: PCA by Scikit-learn:')
print('After PCA transformation, data becomes:')
print(pca.fit_transform(mat)) # transformed data
main()
运行以上代码,输出结果为:
这说明用以上三种方法来实现PCA都是可行的。这样我们就能理解PCA的具体实现过程啦~~有兴趣的读者可以用其它语言实现一下哈
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15