
2018年大数据的五个发展趋势
如今,数据是已成为组织最大的资产之一,而随着2018年的到来,数据对组织的重要性将日益增长。
数字化变化的速度如此之快,以至于人们难以准确预测2018年的趋势。然而,可以肯定的是,大数据将继续影响商业世界的每一个角落。而且,如果人工智能和物联网的进步将继续占主导地位,那么人们很可能会看到更多的企业比以往更容易受到数据驱动。
随着2018年的临近,各种规模的组织将会探索数据驱动业务决策以及如何改善盈利的多种方式。以下是需要了解的五个大数据趋势。
1. 数据可视化将成为企业必备的手段
如今的组织正在接受分析文化,需要数据来支持他们的一举一动。然而,传统的商业智能(BI)方法往往无法释放数据的力量,因为它们往往太复杂、太僵化、速度太慢。
数据可视化或商业智能仪表盘将会得到越来越广泛的应用,因为它们可以帮助人们快速接受和消化最相关的信息。将图形和图表与功能强大且易于使用的业务分析相结合,意味着每个部门的用户不仅可以看到他们的组织如何实时执行,而且还可以采取必要的行动,防止小问题变成更大的问题,并挖掘新的机会。
2. 数据可视化将清理“脏数据”
由于数据来源越来越多,企业还将重点放在开发和驱动业务和营销战略上,清洁数据的需求越来越重要。但是,根据调查机构W8Data的研究发现,只有35%的组织定期进行数据清理。而很多企业还保留了大量的不完整的、不正确的、不一致的,以及重复的数据,而这些将会导致企业损失收入,浪费营销工作,错误的决策,以及企业声誉的损害。商业智能仪表盘可以帮助企业一目了然地查看最重要的数据,并定期和实时监控数据质量,从而清理这些“脏数据”。
3. 数据安全性的提高
数据只在可访问时才有用,但数据访问和安全性之间必须保持平衡。工作人员可能是组织的数据安全面临的最大风险,其责任将超越其领导团队。随着黑客利用向工作人员使用自助服务数据的转变,企业将再次成为网络攻击的对象。
企业会采取传统的商业智能方法,严格控制数据和报表,但这会导致分析的采用率降低,从而导致不明智的决策。现代商业智能将越来越受到青睐,因为它促进了数据治理,并有助于为自助式分析创建安全可靠的环境,从而产生准确、可访问和审核的仪表板和报告。
4. 首席数据官将被裁减
虽然有些人声称首席数据官(CDO)将会兴起,但人们可能会看到相反的情况。随着所有人都可以通过商业智能仪表盘进行数据分析,首席数据官(CDO)可能会变得多余。
数据可视化工具不仅易于提取和学习,还可以根据个人需求定制数据,因此每个成员可以关注部门至关重要的细节,节省了时间和精力。每个获得这些工具的用户都可以在一个操作视图中实现报告和预测的自动化。以这种方式清楚地呈现信息,将使决策者能够深入了解他们所需要的信息,并用它来绘制绩效图,确定趋势,并帮助预测未来的机会或要求来改变优先事项。
5. 改善GDPR合规性,以避免ICO罚款
欧盟即将实施“通用数据保护条例”(GDPR)的核心是保护消费者,这个新规则将从根本上改变如何收集、存储和删除数据。该规定要求组织知道他们在哪里持有客户的个人资料。因此,将不同来源的数据快速提取到商业智能仪表盘并理解的能力将比以往更加重要。
在商业智能仪表盘集中数据可以提供一个实时的真实版本,突出显示数据收集的任何差异,以及客户对使用其个人信息的认可。这种数据管理方法还揭示并解决了整个网络中“隐藏”的数据。
数据分析将成为2018年及以后企业所有业务决策的基础。 但是,一个组织拥有的数据要保持清洁。
商业智能仪表盘将是帮助企业获得未来一年技术创新的关键,以确保企业的数据完整、正确、一致、最新,并符合GDPR法规。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28