京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据要怎么用,12名创业者这样说
当下,大多数企业都明白大数据的作用。大数据——这个庞大甚至是有时是压倒性的信息包含了企业日常经营的过程:销售策略,营销邮件的打开率,网站点击量等等,利用好大数据也能让你发现消费者的行为和心理。
拥有大数据和数据分析工具确实是有帮助的,然而这也是一把双刃剑:过于依赖数据,可能会让我们忽视自己强大的直觉(甚至经常是正确的直觉)。这些直觉又无法量化。针对这个问题,来自青年企业家理事会(YEC)的12位创业者提供了如下意见,告诉我们如何利用大数据,而不盲从数字,不至于所有商业决策都任凭大数据的摆布。
1.大数据只是指导作用,但不能是只依靠大数据
我认为大数据是很有效的,但是我们在做品牌营销决策的时候不能完全以大数据“马首是瞻”。应该有一种有效结合了大数据和“直觉判断”的方法。通过数据指导,我可以为品牌吸引新的用户,但是我不会让数据决定我和读者之间互动的形式。
–Sean Ogle of Location Rebel
2.让自己对数据负责,同时也要切合实际
人类容易犯错,但数据也会误导我们。我把这种现实主义带到了我所有的决策中。它确保我对数据保持负责,同时对它真正告诉我的东西保持合理的怀疑态度。
–Manpreet Singh of TalkLocal
3.数据是ROI的一部分
大数据有他的重要作用,它简化了数十年来的记录和研究。但大数据也不是万无一失的。当我们观测数据的趋势时,需要对影响结果和数据流的其他因素保持关注。在我的报告中,大数据只是投资回报率的一小部分,还有很多工具和方法可以来发现商业趋势。
–Matthew Capala of Search Decoder
4.理解商业数据需求
这取决于你的商业模型,你需要考虑你的数据获取、数据测量的难易性,还是为人为失误留出了空间,你是在调查观点,事实还是数据。在你全面使用大数据之前考虑这些要素,不要盲从大数据。这是你的业务,你才是这方面的专家
–Kevin Conner of Vast Bridges
5.发现模式和趋势
通过大数据工具和方法,我们可以迅速查阅大量数据,以揭示隐藏的规律、未知的联系、市场趋势、顾客偏好等等有用的商业信息。我们就能预计客户需求或欲望,由此改进服务;在问题出现之前,发现并减弱问题的影响,并改进管理决策。
–Luigi Wewege of Vivier Group
6.了解数据的局限
我们竭力让数据引导我们,而不是我们去引导数据。因为估值是一个特殊的领域,数据和直觉有时会无法产生良性互动。我们不断地添加新的数据可视化和解释,标准测试,并在数据出问题的时候可以及时发现。
–Thomas Smale of FE International
7.树立数据的标准
在推行数据优先的措施之后,我们高兴的发现关键指标有了长足的进步。我们也不盲从于大数据,我们使用以往的销售数据进行评估。我们已经发现,知道这个模型的预测极限在哪里是非常重要的。
–Ismael Wrixen of FE International
8.发现大数据背后的细节
要看到大数据背后的细节。并要基于这些细节来做出决定。
–Daisy Jing of Banish
9.定性和定量分析结合
我们将定量数据(度量、调查、服务器日志数据)与定性反馈(调查、访谈、用户研究等)结合在一起。这给我们提供了一个更全面的视角来做出最明智的决定。数据可能会误导决策,因为它们只会讲述部分内容。
–Adelyn Zhou of TOPBOTS
10.专注于获得优质数据
数据质量不一,也有优劣之别。兜售原始数据、分析工具和仪表盘工具——旨在将机器学习与人工智能相结合——的公司比比皆是。重点之一是获得优质、可靠的数据;这样,后续的决策就会水到渠成。
–Ryan Bradley of Koester & Bradley, LLP
11.分析数据找到潜在客户
大数据让我的企业和销售可以了解和预测用户行为,比如人们在哪些场景下网购,购买什么?未来几个月用户可能会转移到哪些场景。这样,销售团队得以找出潜在顾客——真正有望购买产品或服务的顾客,以及掌握向他们推销的最佳时机。
–John Daniel of Innovator John
12.让数据证明你的直觉正确性
直觉告诉我们,登录页的某些设计会有不错的表现。但只有等数据量起来之后,我们才能看到实际的效果,以及这些设计的优缺点。要判断这些猜测是否准确,数据是最有发言权的。在数据的引导下,我们将就内容的取舍作出合适的决策。
–Jason Applebaum of Eager Media
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22