
大数据要怎么用,12名创业者这样说
当下,大多数企业都明白大数据的作用。大数据——这个庞大甚至是有时是压倒性的信息包含了企业日常经营的过程:销售策略,营销邮件的打开率,网站点击量等等,利用好大数据也能让你发现消费者的行为和心理。
拥有大数据和数据分析工具确实是有帮助的,然而这也是一把双刃剑:过于依赖数据,可能会让我们忽视自己强大的直觉(甚至经常是正确的直觉)。这些直觉又无法量化。针对这个问题,来自青年企业家理事会(YEC)的12位创业者提供了如下意见,告诉我们如何利用大数据,而不盲从数字,不至于所有商业决策都任凭大数据的摆布。
1.大数据只是指导作用,但不能是只依靠大数据
我认为大数据是很有效的,但是我们在做品牌营销决策的时候不能完全以大数据“马首是瞻”。应该有一种有效结合了大数据和“直觉判断”的方法。通过数据指导,我可以为品牌吸引新的用户,但是我不会让数据决定我和读者之间互动的形式。
–Sean Ogle of Location Rebel
2.让自己对数据负责,同时也要切合实际
人类容易犯错,但数据也会误导我们。我把这种现实主义带到了我所有的决策中。它确保我对数据保持负责,同时对它真正告诉我的东西保持合理的怀疑态度。
–Manpreet Singh of TalkLocal
3.数据是ROI的一部分
大数据有他的重要作用,它简化了数十年来的记录和研究。但大数据也不是万无一失的。当我们观测数据的趋势时,需要对影响结果和数据流的其他因素保持关注。在我的报告中,大数据只是投资回报率的一小部分,还有很多工具和方法可以来发现商业趋势。
–Matthew Capala of Search Decoder
4.理解商业数据需求
这取决于你的商业模型,你需要考虑你的数据获取、数据测量的难易性,还是为人为失误留出了空间,你是在调查观点,事实还是数据。在你全面使用大数据之前考虑这些要素,不要盲从大数据。这是你的业务,你才是这方面的专家
–Kevin Conner of Vast Bridges
5.发现模式和趋势
通过大数据工具和方法,我们可以迅速查阅大量数据,以揭示隐藏的规律、未知的联系、市场趋势、顾客偏好等等有用的商业信息。我们就能预计客户需求或欲望,由此改进服务;在问题出现之前,发现并减弱问题的影响,并改进管理决策。
–Luigi Wewege of Vivier Group
6.了解数据的局限
我们竭力让数据引导我们,而不是我们去引导数据。因为估值是一个特殊的领域,数据和直觉有时会无法产生良性互动。我们不断地添加新的数据可视化和解释,标准测试,并在数据出问题的时候可以及时发现。
–Thomas Smale of FE International
7.树立数据的标准
在推行数据优先的措施之后,我们高兴的发现关键指标有了长足的进步。我们也不盲从于大数据,我们使用以往的销售数据进行评估。我们已经发现,知道这个模型的预测极限在哪里是非常重要的。
–Ismael Wrixen of FE International
8.发现大数据背后的细节
要看到大数据背后的细节。并要基于这些细节来做出决定。
–Daisy Jing of Banish
9.定性和定量分析结合
我们将定量数据(度量、调查、服务器日志数据)与定性反馈(调查、访谈、用户研究等)结合在一起。这给我们提供了一个更全面的视角来做出最明智的决定。数据可能会误导决策,因为它们只会讲述部分内容。
–Adelyn Zhou of TOPBOTS
10.专注于获得优质数据
数据质量不一,也有优劣之别。兜售原始数据、分析工具和仪表盘工具——旨在将机器学习与人工智能相结合——的公司比比皆是。重点之一是获得优质、可靠的数据;这样,后续的决策就会水到渠成。
–Ryan Bradley of Koester & Bradley, LLP
11.分析数据找到潜在客户
大数据让我的企业和销售可以了解和预测用户行为,比如人们在哪些场景下网购,购买什么?未来几个月用户可能会转移到哪些场景。这样,销售团队得以找出潜在顾客——真正有望购买产品或服务的顾客,以及掌握向他们推销的最佳时机。
–John Daniel of Innovator John
12.让数据证明你的直觉正确性
直觉告诉我们,登录页的某些设计会有不错的表现。但只有等数据量起来之后,我们才能看到实际的效果,以及这些设计的优缺点。要判断这些猜测是否准确,数据是最有发言权的。在数据的引导下,我们将就内容的取舍作出合适的决策。
–Jason Applebaum of Eager Media
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29