
解析旅游大数据核心价值与应用
我国的旅游业正在获得前所未有的蓬勃发展,随着旅游消费观念的日益成熟,游客对体验的需求日益高涨,更渴望追求个性化、体验化、情感化、休闲化以及美化的旅游经历。
大数据作为时下最时髦的词汇,开始向各行业渗透辐射,颠覆着很多特别是传统行业的管理和运营思维。在这一大背景下,大数据也触动着旅游行业管理运营者的神经,搅动着旅游行业管理运营者的思维;大数据在旅游行业释放出的巨大价值吸引着诸多旅游行业人士的兴趣和关注。
《“十三五”旅游业发展规划》中提到云计算、物联网、大数据等现代信息技术在旅游业的应用更加广泛,产业体系的现代化成为旅游业发展的必然趋势。同时对全国旅游规划提出了新的要求:数据资源共享化、产业运行数据化、市场营销精准化、行业管理智能化,运用大数据技术和思维实现智慧旅游。
一、大数据提升旅游管理智慧化
旅游大数据一个明显的发展方向是数据可视化呈现,即通过把复杂的数据转化为可以交互的图形,帮助用户更好地理解分析数据对象,发现、洞察其内在规律,极大地降低个人认知壁垒,将复杂未知数据的交互探索变得可行。依托旅游大数据的可视化发展趋势,管理决策层可以较直观的获取有价值的信息,以此辅助精准决策。对旅游地管理机构来讲,旅游大数据可视化发展将促进旅游管理信息共享与协同发展,并为政府提供一系列数据分析支撑,为管理决策层提供更加直观的决策依据,为挖掘更深层数据价值提供可能。
在公共服务科学化推进进程中,旅游大数据将成为政府提升管理决策分析能力的重要工具,通过对景区大数据与互联网、运营商等第三方大数据的整合,实现智慧管理,包括对未来一定时间内的人流量、车流量等数据进行预测,并根据游客属性进行提前资源准备与服务应对;结合景区监控系统对突发事件如踩踏、拥挤进行实时监测;通过监控系统及大数据分析,对景区人力、物力资源进行科学分配,对所有旅游数据进行科学分配并加强市场违规行为管理。
二、大数据提升旅游营销精准化
通过旅游大数据将旅游服务供应链的各参与方连接起来,实现旅游供应过程中服务流、信息流、价值流的“三流”合一,为旅游智慧营销提供扎实数据支撑。按比较形象的说法,旅游大数据就像一张蜘蛛网,网上的任何一点动一下,蜘蛛马上就能感觉到。旅游服务供应链上的各方存在着紧密的关联关系,起始端旅游需求量的变动,必然会引起下游各环节的变动,而利用大数据可以帮助我们判断一系列变动的规律。
对旅游供应商及中介商来说,数据挖掘是通过对企业的数据进行处理和分析,从中快速准确地找出企业所需有价值信息。在整合包括潜在游客的关键词搜寻动机、搜寻内容偏好、搜寻者行为特征、搜寻者特性等方面的信息后,依托旅游大数据对游客市场细分,可识别出其重点客源市场,便于针对主要潜在客户人群特点进行精准营销及广告投放,最终确定正确的销售模式、客户关系及行销策略等。同时还可以对旅游市场洼地进行挖掘,培育并发展新的客户群体,诊断旅游营销和推演可行性项目,提升客源市场转化率,最终达到提升精准营销能力的目的。对于出现的游客抱怨、客源流失等不利因素,也可以通过旅游大数据(旅游评价、微博、游记、投诉记录等)进行原因分析,及时采取补救措施,或开发新的旅游兴趣点,最终实现旅游智慧营销。
三、大数据提升旅游服务人性化
对游客来说,游客市场细分后最大的好处就是支持个性化旅游。目前的旅游消费模式已由卖方市场转向买方市场,旅游方式也由传统的观光旅游模式转向观光、休闲、度假、户外健身等多元化旅游模式。旅游需求更加个性化、多元化,对旅游信息获取的便利性要求更高,消费方式也更加多元化、个性化。依托旅游大数据的支撑,游客利用智慧旅游提供的终端衔接工具,可以充分获取旅游目的地的交通、住宿、天气、旅游项目是否存在同质化、旅游服务质量及评价状况等内容,安排自身的行程,定制私人旅游线路。
未来大数据是更加主流化的浪潮,将为智慧旅游发展注入新的活力和动力,智慧旅游依靠大数据提供足够有利的资源,才真正实现“智慧”发展。大数据处理可视化,以最直观的方式展现,以更科学、更简化、更智慧的方式推动政府管理、企业运营和游客消费决策。相信未来三到五年,大数据将为智慧旅游发展实现质的突破,助力智慧旅游腾飞。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29