京公网安备 11010802034615号
经营许可证编号:京B2-20210330
基本概念
决策树是分类算法。
数据类型:数值型和标称型。因为构造算法只适用于标称型,所以数值型数据必须离散化。
工作原理
利用香浓熵找到信息增益最大的特征,按照信息增益最大的特征划分数据,如此反复,让无序的数据变的更加有序。使用ID3算法构建树结构。当传入一个新数据时,按照数据找到对应树节点,直到最后没有叶子节点时,完成分类。
样例
不浮出水面是否可以生存? 是否有脚蹼? 是否是鱼类?
通过“不浮出水面是否可以生存”和“是否有脚蹼”这两个特征来判断是否是鱼类。构建一个简单决策树,如果得到一个新的生物,可以用此来判断是否是鱼类。
样例代码
def createDataSet():
dataSet = [[1, 1, 'yes'],
[1, 1, 'yes'],
[1, 0, 'no'],
[0, 1, 'no'],
[0, 1, 'no']]
labels = ['no surfacing','flippers'] return dataSet, labels
香农熵公式
如果待分类的事务可能划分在多个分类之中,则符号Xi的信息定义为:

其中P(Xi)是选择该分类的概率

为了计算熵,需要计算所有类别所有可能值包含的信息期望值总和,公式为:
其中n是分类的数目
香农熵算法
def calcShannonEnt(dataSet):
# 选择该分类的概率 就是每个类型/总个数
# 总数,多少行数据
numEntries = len(dataSet)
labelCounts = {} # 取到的每个类型个数
for featVec in dataSet:
currentLabel = featVec[-1] if currentLabel not in labelCounts.keys(): labelCounts[currentLabel] = 0
labelCounts[currentLabel] += 1
shannonEnt = 0.0
for key in labelCounts: # 得到选择该分类的概率
prob = float(labelCounts[key])/numEntries # 按照公式
shannonEnt -= prob * log(prob,2) #log base 2
return shannonEnt
按照香农熵划分数据
除了需要测量信息熵,还需要划分数据集,度量花费数据集的熵,以便判断当前是否正确划分。 循环计算香浓熵和splitDataSet(),找到最好的特征划分方式。
def splitDataSet(dataSet, axis, value):
# 这个算法返回axis下标之外的列
retDataSet = [] for featVec in dataSet: if featVec[axis] == value:
reducedFeatVec = featVec[:axis] #chop out axis used for splitting
reducedFeatVec.extend(featVec[axis+1:])
retDataSet.append(reducedFeatVec) return retDataSetdef chooseBestFeatureToSplit(dataSet):
# 先取最后一列,用在标签结果:是鱼或不是鱼。
numFeatures = len(dataSet[0]) - 1
# 原始香浓熵
baseEntropy = calcShannonEnt(dataSet)
bestInfoGain = 0.0; bestFeature = -1
# 遍历所有的特征
for i in range(numFeatures): # 创建一个列表包含这个特征的所有值
featList = [example[i] for example in dataSet] # 利用set去重
uniqueVals = set(featList)
newEntropy = 0.0
# 计算该特征所包含类型的香浓熵之和
for value in uniqueVals:
subDataSet = splitDataSet(dataSet, i, value)
prob = len(subDataSet)/float(len(dataSet))
newEntropy += prob * calcShannonEnt(subDataSet) # 得到信息增益
infoGain = baseEntropy - newEntropy # 取最大的信息增益,并记录下标
if (infoGain > bestInfoGain):
bestInfoGain = infoGain
bestFeature = i # 返回下标
return bestFeature
数据集需要满足一定的要求:
数据必须是一种有列表元素组成的列表。(二维数组)
所有列表元素必须有相同长度。
最后一列必须是当前实例的标签。
递归构建决策树
多数表决算法
如果数据集已经处理了所有属性,但是类标签依然不是唯一的,此时需要决定如何定义该叶子节点,在这种情况下,我们通常会采用多数表决决定该叶子节点。
import operator def majorityCnt(classList):
# 排序取出种类最多的
classCount={} for vote in classList: if vote not in classCount.keys(): classCount[vote] = 0
classCount[vote] += 1
sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True) return sortedClassCount[0][0]
构建树算法
def createTree(dataSet,labels):
# 取出结果
classList = [example[-1] for example in dataSet] # 如果结果里的第一个元素所代表的数据个数等于结果本身,说明没有其他分类了
if classList.count(classList[0]) == len(classList):
return classList[0] # 如果没有更多数据了,超过一个才有分类的意义
if len(dataSet[0]) == 1: # 多数表决,返回出现次数最多的
return majorityCnt(classList) # 选出最适合用于切分类型的下标
bestFeat = chooseBestFeatureToSplit(dataSet) # 根据下标取出标签
bestFeatLabel = labels[bestFeat] # 构建树
myTree = {bestFeatLabel:{}} # 删除取出过的标签,避免重复计算
del(labels[bestFeat])
featValues = [example[bestFeat] for example in dataSet] # 利用set去重
uniqueVals = set(featValues) for value in uniqueVals: # 复制所有的子标签,因为是引用类型,以避免改变原始标签数据
subLabels = labels[:] # 递归的构建树
myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value),subLabels) return myTree
使用决策树分类
def classify(inputTree,featLabels,testVec):
firstStr = inputTree.keys()[0]
secondDict = inputTree[firstStr]
featIndex = featLabels.index(firstStr) # print 'featIndex %s' % (featIndex)
key = testVec[featIndex] # print 'key %s' % (key)
valueOfFeat = secondDict[key] if isinstance(valueOfFeat, dict):
classLabel = classify(valueOfFeat, featLabels, testVec) else: classLabel = valueOfFeat return classLabel
dataSet, labels = createDataSet()
mytree = createTree(dataSet, labels[:]) #因为内部会删除labels里的值所以用这样copy一份 print mytree # {'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}print classify(mytree, labels, [0,1])
no
决策树的存储
构造决策树是耗时的任务,即使处理很小的数据集。所以我们可以使用构造好的决策树。
def storeTree(inputTree,filename):
import pickle
fw = open(filename,'w')
pickle.dump(inputTree,fw)
fw.close()def grabTree(filename):
import pickle
fr = open(filename) return pickle.load(fr)
优点
计算复杂度不高
输出结果易于理解
对中间值缺失不敏感
可以处理不相关特侦
缺点
可能产生过度匹配问题
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22