
基本概念
决策树是分类算法。
数据类型:数值型和标称型。因为构造算法只适用于标称型,所以数值型数据必须离散化。
工作原理
利用香浓熵找到信息增益最大的特征,按照信息增益最大的特征划分数据,如此反复,让无序的数据变的更加有序。使用ID3算法构建树结构。当传入一个新数据时,按照数据找到对应树节点,直到最后没有叶子节点时,完成分类。
样例
不浮出水面是否可以生存? 是否有脚蹼? 是否是鱼类?
通过“不浮出水面是否可以生存”和“是否有脚蹼”这两个特征来判断是否是鱼类。构建一个简单决策树,如果得到一个新的生物,可以用此来判断是否是鱼类。
样例代码
def createDataSet():
dataSet = [[1, 1, 'yes'],
[1, 1, 'yes'],
[1, 0, 'no'],
[0, 1, 'no'],
[0, 1, 'no']]
labels = ['no surfacing','flippers'] return dataSet, labels
香农熵公式
如果待分类的事务可能划分在多个分类之中,则符号Xi的信息定义为:
其中P(Xi)是选择该分类的概率
为了计算熵,需要计算所有类别所有可能值包含的信息期望值总和,公式为:
其中n是分类的数目
香农熵算法
def calcShannonEnt(dataSet):
# 选择该分类的概率 就是每个类型/总个数
# 总数,多少行数据
numEntries = len(dataSet)
labelCounts = {} # 取到的每个类型个数
for featVec in dataSet:
currentLabel = featVec[-1] if currentLabel not in labelCounts.keys(): labelCounts[currentLabel] = 0
labelCounts[currentLabel] += 1
shannonEnt = 0.0
for key in labelCounts: # 得到选择该分类的概率
prob = float(labelCounts[key])/numEntries # 按照公式
shannonEnt -= prob * log(prob,2) #log base 2
return shannonEnt
按照香农熵划分数据
除了需要测量信息熵,还需要划分数据集,度量花费数据集的熵,以便判断当前是否正确划分。 循环计算香浓熵和splitDataSet(),找到最好的特征划分方式。
def splitDataSet(dataSet, axis, value):
# 这个算法返回axis下标之外的列
retDataSet = [] for featVec in dataSet: if featVec[axis] == value:
reducedFeatVec = featVec[:axis] #chop out axis used for splitting
reducedFeatVec.extend(featVec[axis+1:])
retDataSet.append(reducedFeatVec) return retDataSetdef chooseBestFeatureToSplit(dataSet):
# 先取最后一列,用在标签结果:是鱼或不是鱼。
numFeatures = len(dataSet[0]) - 1
# 原始香浓熵
baseEntropy = calcShannonEnt(dataSet)
bestInfoGain = 0.0; bestFeature = -1
# 遍历所有的特征
for i in range(numFeatures): # 创建一个列表包含这个特征的所有值
featList = [example[i] for example in dataSet] # 利用set去重
uniqueVals = set(featList)
newEntropy = 0.0
# 计算该特征所包含类型的香浓熵之和
for value in uniqueVals:
subDataSet = splitDataSet(dataSet, i, value)
prob = len(subDataSet)/float(len(dataSet))
newEntropy += prob * calcShannonEnt(subDataSet) # 得到信息增益
infoGain = baseEntropy - newEntropy # 取最大的信息增益,并记录下标
if (infoGain > bestInfoGain):
bestInfoGain = infoGain
bestFeature = i # 返回下标
return bestFeature
数据集需要满足一定的要求:
数据必须是一种有列表元素组成的列表。(二维数组)
所有列表元素必须有相同长度。
最后一列必须是当前实例的标签。
递归构建决策树
多数表决算法
如果数据集已经处理了所有属性,但是类标签依然不是唯一的,此时需要决定如何定义该叶子节点,在这种情况下,我们通常会采用多数表决决定该叶子节点。
import operator def majorityCnt(classList):
# 排序取出种类最多的
classCount={} for vote in classList: if vote not in classCount.keys(): classCount[vote] = 0
classCount[vote] += 1
sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True) return sortedClassCount[0][0]
构建树算法
def createTree(dataSet,labels):
# 取出结果
classList = [example[-1] for example in dataSet] # 如果结果里的第一个元素所代表的数据个数等于结果本身,说明没有其他分类了
if classList.count(classList[0]) == len(classList):
return classList[0] # 如果没有更多数据了,超过一个才有分类的意义
if len(dataSet[0]) == 1: # 多数表决,返回出现次数最多的
return majorityCnt(classList) # 选出最适合用于切分类型的下标
bestFeat = chooseBestFeatureToSplit(dataSet) # 根据下标取出标签
bestFeatLabel = labels[bestFeat] # 构建树
myTree = {bestFeatLabel:{}} # 删除取出过的标签,避免重复计算
del(labels[bestFeat])
featValues = [example[bestFeat] for example in dataSet] # 利用set去重
uniqueVals = set(featValues) for value in uniqueVals: # 复制所有的子标签,因为是引用类型,以避免改变原始标签数据
subLabels = labels[:] # 递归的构建树
myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value),subLabels) return myTree
使用决策树分类
def classify(inputTree,featLabels,testVec):
firstStr = inputTree.keys()[0]
secondDict = inputTree[firstStr]
featIndex = featLabels.index(firstStr) # print 'featIndex %s' % (featIndex)
key = testVec[featIndex] # print 'key %s' % (key)
valueOfFeat = secondDict[key] if isinstance(valueOfFeat, dict):
classLabel = classify(valueOfFeat, featLabels, testVec) else: classLabel = valueOfFeat return classLabel
dataSet, labels = createDataSet()
mytree = createTree(dataSet, labels[:]) #因为内部会删除labels里的值所以用这样copy一份 print mytree # {'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}print classify(mytree, labels, [0,1])
no
决策树的存储
构造决策树是耗时的任务,即使处理很小的数据集。所以我们可以使用构造好的决策树。
def storeTree(inputTree,filename):
import pickle
fw = open(filename,'w')
pickle.dump(inputTree,fw)
fw.close()def grabTree(filename):
import pickle
fr = open(filename) return pickle.load(fr)
优点
计算复杂度不高
输出结果易于理解
对中间值缺失不敏感
可以处理不相关特侦
缺点
可能产生过度匹配问题
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28