京公网安备 11010802034615号
经营许可证编号:京B2-20210330
基本概念
决策树是分类算法。
数据类型:数值型和标称型。因为构造算法只适用于标称型,所以数值型数据必须离散化。
工作原理
利用香浓熵找到信息增益最大的特征,按照信息增益最大的特征划分数据,如此反复,让无序的数据变的更加有序。使用ID3算法构建树结构。当传入一个新数据时,按照数据找到对应树节点,直到最后没有叶子节点时,完成分类。
样例
不浮出水面是否可以生存? 是否有脚蹼? 是否是鱼类?
通过“不浮出水面是否可以生存”和“是否有脚蹼”这两个特征来判断是否是鱼类。构建一个简单决策树,如果得到一个新的生物,可以用此来判断是否是鱼类。
样例代码
def createDataSet():
dataSet = [[1, 1, 'yes'],
[1, 1, 'yes'],
[1, 0, 'no'],
[0, 1, 'no'],
[0, 1, 'no']]
labels = ['no surfacing','flippers'] return dataSet, labels
香农熵公式
如果待分类的事务可能划分在多个分类之中,则符号Xi的信息定义为:

其中P(Xi)是选择该分类的概率

为了计算熵,需要计算所有类别所有可能值包含的信息期望值总和,公式为:
其中n是分类的数目
香农熵算法
def calcShannonEnt(dataSet):
# 选择该分类的概率 就是每个类型/总个数
# 总数,多少行数据
numEntries = len(dataSet)
labelCounts = {} # 取到的每个类型个数
for featVec in dataSet:
currentLabel = featVec[-1] if currentLabel not in labelCounts.keys(): labelCounts[currentLabel] = 0
labelCounts[currentLabel] += 1
shannonEnt = 0.0
for key in labelCounts: # 得到选择该分类的概率
prob = float(labelCounts[key])/numEntries # 按照公式
shannonEnt -= prob * log(prob,2) #log base 2
return shannonEnt
按照香农熵划分数据
除了需要测量信息熵,还需要划分数据集,度量花费数据集的熵,以便判断当前是否正确划分。 循环计算香浓熵和splitDataSet(),找到最好的特征划分方式。
def splitDataSet(dataSet, axis, value):
# 这个算法返回axis下标之外的列
retDataSet = [] for featVec in dataSet: if featVec[axis] == value:
reducedFeatVec = featVec[:axis] #chop out axis used for splitting
reducedFeatVec.extend(featVec[axis+1:])
retDataSet.append(reducedFeatVec) return retDataSetdef chooseBestFeatureToSplit(dataSet):
# 先取最后一列,用在标签结果:是鱼或不是鱼。
numFeatures = len(dataSet[0]) - 1
# 原始香浓熵
baseEntropy = calcShannonEnt(dataSet)
bestInfoGain = 0.0; bestFeature = -1
# 遍历所有的特征
for i in range(numFeatures): # 创建一个列表包含这个特征的所有值
featList = [example[i] for example in dataSet] # 利用set去重
uniqueVals = set(featList)
newEntropy = 0.0
# 计算该特征所包含类型的香浓熵之和
for value in uniqueVals:
subDataSet = splitDataSet(dataSet, i, value)
prob = len(subDataSet)/float(len(dataSet))
newEntropy += prob * calcShannonEnt(subDataSet) # 得到信息增益
infoGain = baseEntropy - newEntropy # 取最大的信息增益,并记录下标
if (infoGain > bestInfoGain):
bestInfoGain = infoGain
bestFeature = i # 返回下标
return bestFeature
数据集需要满足一定的要求:
数据必须是一种有列表元素组成的列表。(二维数组)
所有列表元素必须有相同长度。
最后一列必须是当前实例的标签。
递归构建决策树
多数表决算法
如果数据集已经处理了所有属性,但是类标签依然不是唯一的,此时需要决定如何定义该叶子节点,在这种情况下,我们通常会采用多数表决决定该叶子节点。
import operator def majorityCnt(classList):
# 排序取出种类最多的
classCount={} for vote in classList: if vote not in classCount.keys(): classCount[vote] = 0
classCount[vote] += 1
sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True) return sortedClassCount[0][0]
构建树算法
def createTree(dataSet,labels):
# 取出结果
classList = [example[-1] for example in dataSet] # 如果结果里的第一个元素所代表的数据个数等于结果本身,说明没有其他分类了
if classList.count(classList[0]) == len(classList):
return classList[0] # 如果没有更多数据了,超过一个才有分类的意义
if len(dataSet[0]) == 1: # 多数表决,返回出现次数最多的
return majorityCnt(classList) # 选出最适合用于切分类型的下标
bestFeat = chooseBestFeatureToSplit(dataSet) # 根据下标取出标签
bestFeatLabel = labels[bestFeat] # 构建树
myTree = {bestFeatLabel:{}} # 删除取出过的标签,避免重复计算
del(labels[bestFeat])
featValues = [example[bestFeat] for example in dataSet] # 利用set去重
uniqueVals = set(featValues) for value in uniqueVals: # 复制所有的子标签,因为是引用类型,以避免改变原始标签数据
subLabels = labels[:] # 递归的构建树
myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value),subLabels) return myTree
使用决策树分类
def classify(inputTree,featLabels,testVec):
firstStr = inputTree.keys()[0]
secondDict = inputTree[firstStr]
featIndex = featLabels.index(firstStr) # print 'featIndex %s' % (featIndex)
key = testVec[featIndex] # print 'key %s' % (key)
valueOfFeat = secondDict[key] if isinstance(valueOfFeat, dict):
classLabel = classify(valueOfFeat, featLabels, testVec) else: classLabel = valueOfFeat return classLabel
dataSet, labels = createDataSet()
mytree = createTree(dataSet, labels[:]) #因为内部会删除labels里的值所以用这样copy一份 print mytree # {'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}print classify(mytree, labels, [0,1])
no
决策树的存储
构造决策树是耗时的任务,即使处理很小的数据集。所以我们可以使用构造好的决策树。
def storeTree(inputTree,filename):
import pickle
fw = open(filename,'w')
pickle.dump(inputTree,fw)
fw.close()def grabTree(filename):
import pickle
fr = open(filename) return pickle.load(fr)
优点
计算复杂度不高
输出结果易于理解
对中间值缺失不敏感
可以处理不相关特侦
缺点
可能产生过度匹配问题
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15