京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据在统计中的应用初探
大数据是信息时代的必然产物,是人们在日常工作、学习、生活中,使用以现代网络、特别是以互联网为特征的现代信息技术和其他各种电子计量设备而产生的海量信息。对海量信息的采集、存储、分析、整合、控制而得到的数据就是大数据。中央《关于深化统计管理体制改革提高统计数据真实性的意见》中指出,大力推动大数据在政府统计工作中的应用,将电子化行政记录和各类交易、交互、传感等大数据作为政府统计基础数据的重要来源,努力构建现代化新型统计调查体系。
大数据统计应用有什么意义?还有哪些问题和障碍?如何加快大数据在统计工作中的应用?在此进行探讨交流。
大数据应用广泛
大数据能够更加客观真实地记载经济社会的发展情况。在现代社会,人与人之间、人与单位之间、单位与单位之间,甚至地区与地区之间、国与国之间发生的交流和交易行为都有可能在计算机等各种电子设备上留下记录,由于它们都是电子化的信息,没有掺入任何人为的干扰因素,因此,对这样的信息进行发掘、加工、整理而得出的大数据能够更加客观真实地反映社会经济发展情况。同时,实现大数据统计应用也是遏制统计造假、弄虚作假行为的重要途径。
大数据能够最大限度地拓展现行统计调查制度所无法涉及到的领域。大数据能轻而易举地解决常规统计调查无法涉及到的、各种复杂多变的行业和领域的统计,因为大数据不但量大,其涵盖面也十分广泛,任何时候、任何地方、任何人、任何单位,只要发生了互动行为就要留下“痕迹”,而对这些信息进行加工整理获得的大数据必然能够有效解决现行统计和国民经济核算资料不全的问题。
大数据分析应用已经发挥出了显著的社会经济效益。目前,大数据分析应用已经有了实质性的进展,例如,商贸领域通过对商品销售大数据分析,能够发现同一种产品在不同地区的销量、销售的时间以及购买产品的客户群,然后作出市场预测,制定出新的订货计划,取得可观的经济效益。在金融、保险、交通等行业以及财政、教育等领域,通过大数据分析,能够发现新的商机或管理模式,并寻找到改进服务的最佳途径。
大数据如何应用于统计
就目前的情况,要真正实现大数据在统计工作中的应用尚面临着很多问题与障碍,如口径不一致、范围不相同、标准不统一、程序不规范、信息不共享等,这些或将成为大数据统计应用的“拦路虎”。在此,笔者提出几点粗浅的建议。
建立机构,统一管理大数据开发应用工作。大数据就像是一座巨大的“宝藏”,如果不加以开发就无法发挥其作用。但是,如果无序开发,也会使得这笔宝贵的财富得不到有效利用,造成浪费,甚至产生负面效应。因此,要真正实现大数据统计应用,应建立一个专门的管理机构,加强组织领导,统一管理大数据的开发、应用,保障数据信息安全,在某些领域、某些行业逐步实现以大数据取代常规统计调查数据。同时,制定周密计划、明确职责分工、选择工作路径、加强日常监管,从而实现对大数据这一宝贵资源的有效利用。
统一标准,实现大数据在统计上的可比性。统计是一门科学,是一项十分严谨的工作。因此,统计指标的含义、口径、范围、来源渠道、计算方法、计量单位等应该统一,只有这样才具有可比性。要实现大数据统计应用,提高统计工作的科学性,应该制定统一的标准,如在生产、流通、服务等领域,界定哪些信息属于可在统计上应用的大数据,如何将大数据的口径、范围调整为常规统计所需的口径和范围,如何对大数据的海量信息进行甄别、筛选,然后挖掘出统计核算所需要的、且常规统计所难以取得的资料。只有在这些方面统一标准,才能真正实现大数据在统计中的应用。
资源共享,畅通大数据信息来源的渠道。由于目前大部分单位都认为本部门的数据、行政记录等信息是商业秘密,因而,出于“保密”等原因,一般不对外提供,即便是政府统计部门需要,一些单位也是顾虑重重。因此,要实现大数据在统计上的应用,必须打破单位之间信息“壁垒”,真正实现信息资源共享。只有这样,才能够最大限度地满足常规统计、尤其是国民经济核算的数据需求。当然,为防止泄密,有必要制定一个关于大数据开发利用的制度,严格规定对外发布的范围,保障个体信息资料的安全。
创造条件,为大数据开发应用铺平道路。大数据应用离不开现代信息技术和网络技术,更离不开大数据发掘、加工、整理和分析的人才。因此,应该大力培养一批大数据应用、尤其是大数据分析方面的人才,为将大数据广泛应用于政府统计、宏观管理、企业经营等方面奠定基础。要鼓励高校和科研机构有针对性地开发大数据应用软件,为大数据分析提供帮助。要通过国内培养、国外委培等途径,培养一批大数据分析师,除开展大数据分析外,还要将大数据分析的理念、思路广泛应用于宏观管理和微观经营之中,发挥出大数据统计应有社会经济效益。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01