
数据挖掘中的分类问题
分类(classification)问题是数据挖掘领域研究的历史最为悠长,也是研究的较为透彻的问题。在数据挖掘领域,分类可以看成是从一个数据集到一组预先定义的、非交叠的类别的映射过程。其中映射关系的生成以及映射关系的应用就是数据挖掘分类方法主要的研究内容。这里的映射关系就是我们常说的分类函数或分类模型(分类器),映射关系的应用就对应于我们使用分类器将数据集中的数据项划分到给定类别中的某一个类别的过程。
举一个简单的例子,我们人是怎么区分另一个人是男性和女性的问题就是一个分类的问题。在我们的大脑中早就建立了男人和女人的模型,每当我们遇到一个陌生人的时候,我们的大脑就获取到了这个人的特征信息,通过大脑中的模型去将这个人归类到男性或者女性的类别中(当然人的大脑神经系统处理这个问题时的流程往往比我们这里叙述的复杂的多)。但是我们大脑中的模型是怎么建立的呢?是生来就有的吗?很明显不是。我们大脑建立模型的过程都是从过去的经验中总结积累出来的,并在实践过程中不断地修正或扩充。
很明显我们就可以从上面的例子中得出分类的实践意义是什么——分类从历史的特征数据中推导出特定对象的描述模型,用来对未来数据的预测和分析。分类方法具有广泛的应用领域,比如医疗诊断、信用卡系统的信用分级、图像模式识别、网络数据分类等。
1分类的基本概念和过程描述:
分类的定义:给定一个数据集D={t1,t2,…,tn}和一组类C={C1,C2,…,Cn},分类问题就是去确定一个映射f:D->C,每个元组ti被分配到一个类中。类Cj包含映射到该类中的所有数据元组,即Cj={ti | f(ti)=Cj,1<=i<=n,且ti∈D}。
一般地,数据分类分类两个步骤:建模和模型应用。
1.建立模型,描述预订的数据类集和概念集。
通过分析由属性描述的数据集元组来构造模型。数据元组即样本、实例或对象。用于建模而被分析的数据元组的集合形成了训练集,训练集中的样本即是训练元组。为了保证建造的模型与与原始数据的分布匹配且可用,我们需要从样本群中随机的选取训练样本。每个训练元组都有一个特定的类标签与之对应,即对于样本数据X,其中x是他的训练元组,y是对应的类标签,X就可以理解为类似的二维坐标关系X(x,y),当然这里只是便于理解的简单例子。实际上,x往往包含多个特征值,是多维向量。
分类器模型的一般表示形式为分类规则、决策树或等式、不等式、规则式等形式,这个分类器模型对历史数据分布模型进行了归纳,可以用来为以后的数据样本分类,也能帮助人们更好的理解数据集的内容或含义。
2.分类模型的应用。
分类器在使用之前,首先要准确的评估模型的预测准确率,只有在模型的准确率可以接受时,才可以用它来对类标号未知的数据元组或对象进行分类。模型在给定测试数据上的准确率是指测试样本被模型正确分类的百分比,对于每个测试样本,将已知的类标号和该样本被分类模型预测的类作比较,这样就确定了测试样本是否被准确分类。需要注意的是,若将训练数据用作测试数据,则模型的预测准确率将过分乐观,因为学习模型倾向于过分的拟合训练数据。因此,比较合理的模型评估方法是使用交叉验证法,从原始数据集中随机选取独立于训练样本的测试数据。
简单地说来,分类的两个步骤可以归结为模型的建立和使用模型进行分类。模型的建立的过程就是使用训练数据进行学习的过程,模型的应用过程就是对类标号未知的数据进行分类的过程。
机器学习中的方法或范式(paradigm)有很多种分类体系,例如从学习的方式分,有从例子中学习、类比学习、分析学习等,但一般来说,现在研究得最多、被认为最有用的是从例子中学习(learning from examples)。对从例子中学习,又有很多分类方法,例如从学习的主动性方面,可以分为主动学习(active learning)和被动学习(passive learning);从训练过程启动的早晚,可以分为迫切学习(eager learning)和惰性学习(lazy learning);等等。
对“从例子中学习”的方法,从训练样本的歧义性(ambiguity)的角度来进行分类,机器学习可以分为监督学习、非监督学习和强化学习,这是机器学习最常见的分类方法。对于监督学习,给定一系列训练样本,其中每个样本都做上了标记,比如说标记出这个样本来自对一个苹果的一次观测。学习的目的是从这些带有标记的样本中学习到一些概念,比如说什么样的数据对应苹果而不是香蕉,并且在未来给出新的样本时,能够正确预测新样本的标记。这里所有训练例的概念标记都是已知的,因此训练样本的歧义性最低。简单的说,监督学习就是由训练样本中学到或建立一个模式(函数 / learning model),并依此模式推测新的instances。训练样本是由数据元组(通常是向量)和预期输出(类别值)所组成。函数的输出可以是一个连续的值(称为回归分析),或是预测一个分类标签(称作分类)。
3分类器常见的构造方法:
从分类器构造参照的理论原理来源来看,分类器常见的构造方法可以分为3大类:数理统计方法、机器学习方法和神经网络方法等。
数理统计方法:包括贝叶斯法和非参数法。常见的临近学习或基于事例的学习(Instance-Based Learning,IBL)属于非参数方法。k-最邻近算法(k-Nearest Neighborhors,简称kNN)就是属于非参数方法。
神经网络方法:BP算法.
其他,如粗糙集等。
从使用技术上来分,可以分为四种类型:基于距离的分类方法、决策树分类方法、贝叶斯分类方法和规则归纳方法。基于距离的分类方法主要有最邻近方法;决策树方法有ID3、C4.5、VFDT等;贝叶斯方法包括朴素贝叶斯方法和EM算法;规则归纳方法包括AQ算法、CN2算法和FOIL算法。
分类方法中我们不仅需要研究分类器的构造方法和应用,还要考虑到分类数据的预处理以及分类算法的性能评价。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29