京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据到底怎么学:数据科学概论与大数据学习误区
“数据科学家走在通往无所不知的路上,走到尽头才发现,自己一无所知。”-Will Cukierski,Head of Competitions & Data Scientist at Kaggle
最近不少网友向我咨询如何学习大数据技术?大数据怎么入门?怎么做大数据分析?数据科学需要学习那些技术?大数据的应用前景等等问题。由于大数据技术涉及内容太庞杂,大数据应用领域广泛,而且各领域和方向采用的关键技术差异性也会较大,难以三言两语说清楚,本文从数据科学和大数据关键技术体系角度,来说说大数据的核心技术什么,到底要怎么学习它,以及怎么避免大数据学习的误区,以供参考。
1.大数据应用的目标是普适智能
要学好大数据,首先要明确大数据应用的目标,我曾经讲过大数据就好比万金油,像百度几年前提的框计算,这个框什么都能往里装。为什么会这样,因为大数据这个框太大,其终极目标是利用一系列信息技术实现海量数据条件下的人类深度洞察和决策智能化,最终走向普适的人机智能融合!
这不仅是传统信息化管理的扩展延伸,也是人类社会发展管理智能化的核心技术驱动力。通过大数据应用,面向过去,发现数据规律,归纳已知;面向未来,挖掘数据趋势,预测未知。从而提高人们对事物的理解和决策处置能力,最终实现社会的普适智能。不管是智慧医疗、智慧交通等相关技术和系统,其本质都是朝着这一目标在演进。随着云计算平台和大数据技术的高速发展,获得大数据基础设施建设相关技术和支持越来越容易。同时,移动互联网和物联网技术所具备的全面数据采集能力,客观上促进了大数据的积累和爆发。
总之大数据就是个大框,什么都能往里装,大数据源的采集如果用传感器的话离不开物联网、大数据源的采集用智能手机的话离不开移动互联网,大数据海量数据存储要高扩展就离不开云计算,大数据计算分析采用传统的机器学习、数据挖掘技术会比较慢,需要做并行计算和分布式计算扩展,大数据要自动特征工程离不开深度学习、大数据要互动展示离不开可视化,而面向特定领域和多模态数据的大数据分析技术更是十分广泛,金融大数据、交通大数据、医疗大数据、安全大数据、电信大数据、电商大数据、社交大数据,文本大数据、图像大数据、视频大数据…诸如此类等等范围太广,所以首先我们要搞清楚大数据应用的核心目标,这个明确之后,才利于结合不同行业特点把握住共性关键技术,从而有针对性的学习。
图1 国外大数据企业关系图,传统信息技术企业也在向智能化发展,与新兴大数据企业互为竞争和支持。
2.从大数据版图看数据科学及其关键技术体系
明确大数据应用目标之后,我们再看看数据科学(Data Science),数据科学可以理解为一个跨多学科领域的,从数据中获取知识的科学方法,技术和系统集合,其目标是从数据中提取出有价值的信息,它结合了诸多领域中的理论和技术,包括应用数学,统计,模式识别,机器学习,人工智能,深度学习,数据可视化,数据挖掘,数据仓库,以及高性能计算等。图灵奖得主Jim Gray把数据科学喻为科学的“第四范式”(经验、理论、计算和数据驱动),并断言因为信息技术的影响和数据的泛滥增长,未来不管什么领域的科学问题都将由数据所驱动。
图2 典型的数据科学过程:包括原始数据采集,数据预处理和清洗,数据探索式分析,数据计算建模,数据可视化和报表,数据产品和决策支持等。
传统信息化技术多是在结构化和小规模数据上进行计算处理,大数据时代呢,数据变大了,数据多源异构了,需要智能预测和分析支持了,所以核心技术离不开机器学习、数据挖掘、人工智能等,另外还需考虑海量数据的分布式存储管理和机器学习算法并行处理,所以数据的大规模增长客观上促进了DT(Data Technology)技术生态的繁荣与发展,包括大数据采集、数据预处理、分布式存储、NOSQL数据库、多模式计算(批处理、在线处理、实时流处理、内存处理)、多模态计算(图像、文本、视频、音频)、数据仓库、数据挖掘、机器学习、人工智能、深度学习、并行计算、可视化等各种技术范畴和不同的层面。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15